Spherical radial basis function approximation of some physical quantities measured
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00569850" target="_blank" >RIV/67985840:_____/23:00569850 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.cam.2023.115128" target="_blank" >https://doi.org/10.1016/j.cam.2023.115128</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2023.115128" target="_blank" >10.1016/j.cam.2023.115128</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spherical radial basis function approximation of some physical quantities measured
Popis výsledku v původním jazyce
The article treats the spherical interpolation and approximation, i.e., a way of measured data processing in case when the scalar data sampling is performed at nodes on the unit 2D sphere surface in the 3D Euclidean space (in general, on the (d−1)-dimensional sphere surface in the d-dimensional space). We use the spherical radial basis function interpolation with an inverse multiquadric basis function and a second degree polynomial in Cartesian coordinates as a trend. The formulae of this type can be useful in the interpretation of various physical measurements and have wide applications in geosciences, e.g., in the treatment of anisotropy of magnetic susceptibility data measured. We present the advantages of the formula chosen on numerical examples. However, in practical computation with high number of sampling nodes, the matrix of the system for determining interpolation coefficients may be ill-conditioned. Then the standard double precision LU factorization does not give a reliable solution due to the effect of round-off error accumulation and some more sophisticated means of solving the system are to be used.
Název v anglickém jazyce
Spherical radial basis function approximation of some physical quantities measured
Popis výsledku anglicky
The article treats the spherical interpolation and approximation, i.e., a way of measured data processing in case when the scalar data sampling is performed at nodes on the unit 2D sphere surface in the 3D Euclidean space (in general, on the (d−1)-dimensional sphere surface in the d-dimensional space). We use the spherical radial basis function interpolation with an inverse multiquadric basis function and a second degree polynomial in Cartesian coordinates as a trend. The formulae of this type can be useful in the interpretation of various physical measurements and have wide applications in geosciences, e.g., in the treatment of anisotropy of magnetic susceptibility data measured. We present the advantages of the formula chosen on numerical examples. However, in practical computation with high number of sampling nodes, the matrix of the system for determining interpolation coefficients may be ill-conditioned. Then the standard double precision LU factorization does not give a reliable solution due to the effect of round-off error accumulation and some more sophisticated means of solving the system are to be used.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computational and Applied Mathematics
ISSN
0377-0427
e-ISSN
1879-1778
Svazek periodika
427
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
7
Strana od-do
115128
Kód UT WoS článku
000990451700001
EID výsledku v databázi Scopus
2-s2.0-85148329875