Grothendieck C(K)-spaces and the Josefson-Nissenzweig theorem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00579686" target="_blank" >RIV/67985840:_____/23:00579686 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4064/fm218-6-2023" target="_blank" >https://doi.org/10.4064/fm218-6-2023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4064/fm218-6-2023" target="_blank" >10.4064/fm218-6-2023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Grothendieck C(K)-spaces and the Josefson-Nissenzweig theorem
Popis výsledku v původním jazyce
For a compact space K, the Banach space C(K) is said to have the l(1)-Grothendieck property if every weak* convergent sequence (mu(n) : n is an element of omega) of functionals on C(K) such that mu(n) is an element of l(1)(K) for every n is an element of omega is weakly convergent. Thus, the l(1)- Grothendieck property is a weakening of the standard Grothendieck property for Banach spaces of continuous functions. We observe that C(K) has the l(1)-Grothendieck property if and only if there does not exist any sequence of functionals (mu(n) : n is an element of omega) on C(K), with mu(n) is an element of l(1)(K) for every n is an element of omega, satisfying the conclusion of the classical Josefson-Nissenzweig theorem. We construct an example of a separable compact space K such that C(K) has the l(1)-Grothendieck property but it does not have the Grothendieck property. We also show that for many classical consistent examples of Efimov spaces K their Banach spaces C(K) do not have the l(1)-Grothendieck property.
Název v anglickém jazyce
Grothendieck C(K)-spaces and the Josefson-Nissenzweig theorem
Popis výsledku anglicky
For a compact space K, the Banach space C(K) is said to have the l(1)-Grothendieck property if every weak* convergent sequence (mu(n) : n is an element of omega) of functionals on C(K) such that mu(n) is an element of l(1)(K) for every n is an element of omega is weakly convergent. Thus, the l(1)- Grothendieck property is a weakening of the standard Grothendieck property for Banach spaces of continuous functions. We observe that C(K) has the l(1)-Grothendieck property if and only if there does not exist any sequence of functionals (mu(n) : n is an element of omega) on C(K), with mu(n) is an element of l(1)(K) for every n is an element of omega, satisfying the conclusion of the classical Josefson-Nissenzweig theorem. We construct an example of a separable compact space K such that C(K) has the l(1)-Grothendieck property but it does not have the Grothendieck property. We also show that for many classical consistent examples of Efimov spaces K their Banach spaces C(K) do not have the l(1)-Grothendieck property.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF20-22230L" target="_blank" >GF20-22230L: Banachovy prostory spojitých a lipschitzovských funkcí</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Fundamenta Mathematicae
ISSN
0016-2736
e-ISSN
1730-6329
Svazek periodika
263
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
27
Strana od-do
105-131
Kód UT WoS článku
001108631400001
EID výsledku v databázi Scopus
2-s2.0-85179096168