Insensitizing control problem for the Hirota–Satsuma system of KdV–KdV type
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00578002" target="_blank" >RIV/67985840:_____/24:00578002 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.na.2023.113422" target="_blank" >https://doi.org/10.1016/j.na.2023.113422</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.na.2023.113422" target="_blank" >10.1016/j.na.2023.113422</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Insensitizing control problem for the Hirota–Satsuma system of KdV–KdV type
Popis výsledku v původním jazyce
This paper is concerned with the existence of insensitizing controls for a nonlinear coupled system of two Korteweg-de Vries (KdV) equations, typically known as the Hirota-Satsuma system. The idea is to look for controls such that some functional of the states (the so-called sentinel) is insensitive to the small perturbations of initial data. Since the system is coupled, we consider a sentinel in which we observe both components of the system in a localized observation set. By some classical argument, the insensitizing problem is then reduced to a null-control problem for an extended system where the number of equations is doubled. We study the null-controllability for the linearized model associated to that extended system by means of a suitable Carleman estimate which is proved in this paper. Finally, the local null-controllability of the extended (nonlinear) system is obtained by applying the inverse mapping theorem, and this implies the required insensitizing property for the concerned model.
Název v anglickém jazyce
Insensitizing control problem for the Hirota–Satsuma system of KdV–KdV type
Popis výsledku anglicky
This paper is concerned with the existence of insensitizing controls for a nonlinear coupled system of two Korteweg-de Vries (KdV) equations, typically known as the Hirota-Satsuma system. The idea is to look for controls such that some functional of the states (the so-called sentinel) is insensitive to the small perturbations of initial data. Since the system is coupled, we consider a sentinel in which we observe both components of the system in a localized observation set. By some classical argument, the insensitizing problem is then reduced to a null-control problem for an extended system where the number of equations is doubled. We study the null-controllability for the linearized model associated to that extended system by means of a suitable Carleman estimate which is proved in this paper. Finally, the local null-controllability of the extended (nonlinear) system is obtained by applying the inverse mapping theorem, and this implies the required insensitizing property for the concerned model.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GC22-08633J" target="_blank" >GC22-08633J: Kvalitativní teorie MHD a příbuzných rovnic</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nonlinear Analysis: Theory, Methods & Applications
ISSN
0362-546X
e-ISSN
1873-5215
Svazek periodika
239
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
30
Strana od-do
113422
Kód UT WoS článku
001107721800001
EID výsledku v databázi Scopus
2-s2.0-85175247950