Insensitizing control problems for the stabilized Kuramoto-Sivashinsky system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00599953" target="_blank" >RIV/67985840:_____/24:00599953 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1051/cocv/2024059" target="_blank" >https://doi.org/10.1051/cocv/2024059</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/cocv/2024059" target="_blank" >10.1051/cocv/2024059</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Insensitizing control problems for the stabilized Kuramoto-Sivashinsky system
Popis výsledku v původním jazyce
In this work, we address the existence of insensitizing controls for a nonlinear coupled system of fourth- and second-order parabolic equations known as the stabilized Kuramoto-Sivashinsky model. The main idea is to look for controls such that some functional of the states (the so-called sentinel) is locally insensitive to the perturbations of the initial data. Since the underlying model is coupled, we shall consider a sentinel in which we may observe one or two components of the system in a localized observation set. By some classical arguments, the insensitizing problem can be reduced to a null-controllability one for a cascade system where the number of equations is doubled. Upon linearization, the null-controllability for this new system is studied by means of Carleman estimates but unlike other insensitizing problems for scalar models, the election of the Carleman tools and the overall control strategy depends on the initial choice of the sentinel due to the (lack of) couplings arising in the extended system. Finally, the local null-controllability of the extended (nonlinear) system (and thus the insensitizing property) is obtained by applying the inverse mapping theorem.
Název v anglickém jazyce
Insensitizing control problems for the stabilized Kuramoto-Sivashinsky system
Popis výsledku anglicky
In this work, we address the existence of insensitizing controls for a nonlinear coupled system of fourth- and second-order parabolic equations known as the stabilized Kuramoto-Sivashinsky model. The main idea is to look for controls such that some functional of the states (the so-called sentinel) is locally insensitive to the perturbations of the initial data. Since the underlying model is coupled, we shall consider a sentinel in which we may observe one or two components of the system in a localized observation set. By some classical arguments, the insensitizing problem can be reduced to a null-controllability one for a cascade system where the number of equations is doubled. Upon linearization, the null-controllability for this new system is studied by means of Carleman estimates but unlike other insensitizing problems for scalar models, the election of the Carleman tools and the overall control strategy depends on the initial choice of the sentinel due to the (lack of) couplings arising in the extended system. Finally, the local null-controllability of the extended (nonlinear) system (and thus the insensitizing property) is obtained by applying the inverse mapping theorem.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ESAIM-Control Optimisation and Calculus of Variations
ISSN
1292-8119
e-ISSN
1262-3377
Svazek periodika
30
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
45
Strana od-do
73
Kód UT WoS článku
001330548900007
EID výsledku v databázi Scopus
2-s2.0-85207101294