Local enumeration and majority lower bounds
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00588526" target="_blank" >RIV/67985840:_____/24:00588526 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4230/LIPIcs.CCC.2024.17" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.CCC.2024.17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.CCC.2024.17" target="_blank" >10.4230/LIPIcs.CCC.2024.17</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Local enumeration and majority lower bounds
Popis výsledku v původním jazyce
Depth-3 circuit lower bounds and k-SAT algorithms are intimately related, the state-of-the-art Σk3 -circuit lower bound (Or-And-Or circuits with bottom fan-in at most k) and the k-SAT algorithm of Paturi, Pudlák, Saks, and Zane (J. ACM’05) are based on the same combinatorial theorem regarding k-CNFs. In this paper we define a problem which reveals new interactions between the two, and suggests a concrete approach to significantly stronger circuit lower bounds and improved k-SAT algorithms. For a natural number k and a parameter t, we consider the Enum(k, t) problem defined as follows: given an n-variable k-CNF and an initial assignment α, output all satisfying assignments at Hamming distance t(n) of α, assuming that there are no satisfying assignments of Hamming distance less than t(n) of α. We observe that an upper bound b(n, k, t) on the complexity of Enum(k, t) simultaneously implies depth-3 circuit lower bounds and k-SAT algorithms: Depth-3 circuits: Any Σk3 circuit computing the Majority function has size at least (nn2 )/b(n, k, n2 ). k-SAT: There exists an algorithm solving k-SAT in time O (Pn/t=12 b(n, k, t) ) . A simple construction shows that b(n, k, n2 ) ≥ 2(1−O(log(k)/k))n. Thus, matching upper bounds for b(n, k, n2 ) would imply a Σk3 -circuit lower bound of 2Ω(log(k)n/k) and a k-SAT _upper bound of 2(1−Ω(log(k)/k))n. The former yields an unrestricted depth-3 lower bound of 2ω(√n) solving a long standing open problem, and the latter breaks the Super Strong Exponential Time Hypothesis. In this paper, we propose a randomized algorithm for Enum(k, t) and introduce new ideas to analyze it. We demonstrate the power of our ideas by considering the first non-trivial instance of the problem, i.e., Enum(3, n2 ). We show that the expected running time of our algorithm is 1.598n, substantially improving on the trivial bound of 3n/2 ≃ 1.732n. This already improves Σ33 lower bounds for Majority function to 1.251n. The previous bound was 1.154n which follows from the work of Håstad, Jukna, and Pudlák (Comput. Complex.’95). By restricting ourselves to monotone CNFs, Enum(k, t) immediately becomes a hypergraph Turán problem. Therefore our techniques might be of independent interest in extremal combinatorics.
Název v anglickém jazyce
Local enumeration and majority lower bounds
Popis výsledku anglicky
Depth-3 circuit lower bounds and k-SAT algorithms are intimately related, the state-of-the-art Σk3 -circuit lower bound (Or-And-Or circuits with bottom fan-in at most k) and the k-SAT algorithm of Paturi, Pudlák, Saks, and Zane (J. ACM’05) are based on the same combinatorial theorem regarding k-CNFs. In this paper we define a problem which reveals new interactions between the two, and suggests a concrete approach to significantly stronger circuit lower bounds and improved k-SAT algorithms. For a natural number k and a parameter t, we consider the Enum(k, t) problem defined as follows: given an n-variable k-CNF and an initial assignment α, output all satisfying assignments at Hamming distance t(n) of α, assuming that there are no satisfying assignments of Hamming distance less than t(n) of α. We observe that an upper bound b(n, k, t) on the complexity of Enum(k, t) simultaneously implies depth-3 circuit lower bounds and k-SAT algorithms: Depth-3 circuits: Any Σk3 circuit computing the Majority function has size at least (nn2 )/b(n, k, n2 ). k-SAT: There exists an algorithm solving k-SAT in time O (Pn/t=12 b(n, k, t) ) . A simple construction shows that b(n, k, n2 ) ≥ 2(1−O(log(k)/k))n. Thus, matching upper bounds for b(n, k, n2 ) would imply a Σk3 -circuit lower bound of 2Ω(log(k)n/k) and a k-SAT _upper bound of 2(1−Ω(log(k)/k))n. The former yields an unrestricted depth-3 lower bound of 2ω(√n) solving a long standing open problem, and the latter breaks the Super Strong Exponential Time Hypothesis. In this paper, we propose a randomized algorithm for Enum(k, t) and introduce new ideas to analyze it. We demonstrate the power of our ideas by considering the first non-trivial instance of the problem, i.e., Enum(3, n2 ). We show that the expected running time of our algorithm is 1.598n, substantially improving on the trivial bound of 3n/2 ≃ 1.732n. This already improves Σ33 lower bounds for Majority function to 1.251n. The previous bound was 1.154n which follows from the work of Håstad, Jukna, and Pudlák (Comput. Complex.’95). By restricting ourselves to monotone CNFs, Enum(k, t) immediately becomes a hypergraph Turán problem. Therefore our techniques might be of independent interest in extremal combinatorics.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
39th Computational Complexity Conference (CCC 2024)
ISBN
978-3-95977-331-7
ISSN
1868-8969
e-ISSN
1868-8969
Počet stran výsledku
25
Strana od-do
17
Název nakladatele
Schloss Dagstuhl, Leibniz-Zentrum für Informatik
Místo vydání
Dagstuhl
Místo konání akce
Ann Arbor
Datum konání akce
22. 7. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—