Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Local enumeration and majority lower bounds

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00588526" target="_blank" >RIV/67985840:_____/24:00588526 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.4230/LIPIcs.CCC.2024.17" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.CCC.2024.17</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.CCC.2024.17" target="_blank" >10.4230/LIPIcs.CCC.2024.17</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Local enumeration and majority lower bounds

  • Popis výsledku v původním jazyce

    Depth-3 circuit lower bounds and k-SAT algorithms are intimately related, the state-of-the-art Σk3 -circuit lower bound (Or-And-Or circuits with bottom fan-in at most k) and the k-SAT algorithm of Paturi, Pudlák, Saks, and Zane (J. ACM’05) are based on the same combinatorial theorem regarding k-CNFs. In this paper we define a problem which reveals new interactions between the two, and suggests a concrete approach to significantly stronger circuit lower bounds and improved k-SAT algorithms. For a natural number k and a parameter t, we consider the Enum(k, t) problem defined as follows: given an n-variable k-CNF and an initial assignment α, output all satisfying assignments at Hamming distance t(n) of α, assuming that there are no satisfying assignments of Hamming distance less than t(n) of α. We observe that an upper bound b(n, k, t) on the complexity of Enum(k, t) simultaneously implies depth-3 circuit lower bounds and k-SAT algorithms: Depth-3 circuits: Any Σk3 circuit computing the Majority function has size at least (nn2 )/b(n, k, n2 ). k-SAT: There exists an algorithm solving k-SAT in time O (Pn/t=12 b(n, k, t) ) . A simple construction shows that b(n, k, n2 ) ≥ 2(1−O(log(k)/k))n. Thus, matching upper bounds for b(n, k, n2 ) would imply a Σk3 -circuit lower bound of 2Ω(log(k)n/k) and a k-SAT _upper bound of 2(1−Ω(log(k)/k))n. The former yields an unrestricted depth-3 lower bound of 2ω(√n) solving a long standing open problem, and the latter breaks the Super Strong Exponential Time Hypothesis. In this paper, we propose a randomized algorithm for Enum(k, t) and introduce new ideas to analyze it. We demonstrate the power of our ideas by considering the first non-trivial instance of the problem, i.e., Enum(3, n2 ). We show that the expected running time of our algorithm is 1.598n, substantially improving on the trivial bound of 3n/2 ≃ 1.732n. This already improves Σ33 lower bounds for Majority function to 1.251n. The previous bound was 1.154n which follows from the work of Håstad, Jukna, and Pudlák (Comput. Complex.’95). By restricting ourselves to monotone CNFs, Enum(k, t) immediately becomes a hypergraph Turán problem. Therefore our techniques might be of independent interest in extremal combinatorics.

  • Název v anglickém jazyce

    Local enumeration and majority lower bounds

  • Popis výsledku anglicky

    Depth-3 circuit lower bounds and k-SAT algorithms are intimately related, the state-of-the-art Σk3 -circuit lower bound (Or-And-Or circuits with bottom fan-in at most k) and the k-SAT algorithm of Paturi, Pudlák, Saks, and Zane (J. ACM’05) are based on the same combinatorial theorem regarding k-CNFs. In this paper we define a problem which reveals new interactions between the two, and suggests a concrete approach to significantly stronger circuit lower bounds and improved k-SAT algorithms. For a natural number k and a parameter t, we consider the Enum(k, t) problem defined as follows: given an n-variable k-CNF and an initial assignment α, output all satisfying assignments at Hamming distance t(n) of α, assuming that there are no satisfying assignments of Hamming distance less than t(n) of α. We observe that an upper bound b(n, k, t) on the complexity of Enum(k, t) simultaneously implies depth-3 circuit lower bounds and k-SAT algorithms: Depth-3 circuits: Any Σk3 circuit computing the Majority function has size at least (nn2 )/b(n, k, n2 ). k-SAT: There exists an algorithm solving k-SAT in time O (Pn/t=12 b(n, k, t) ) . A simple construction shows that b(n, k, n2 ) ≥ 2(1−O(log(k)/k))n. Thus, matching upper bounds for b(n, k, n2 ) would imply a Σk3 -circuit lower bound of 2Ω(log(k)n/k) and a k-SAT _upper bound of 2(1−Ω(log(k)/k))n. The former yields an unrestricted depth-3 lower bound of 2ω(√n) solving a long standing open problem, and the latter breaks the Super Strong Exponential Time Hypothesis. In this paper, we propose a randomized algorithm for Enum(k, t) and introduce new ideas to analyze it. We demonstrate the power of our ideas by considering the first non-trivial instance of the problem, i.e., Enum(3, n2 ). We show that the expected running time of our algorithm is 1.598n, substantially improving on the trivial bound of 3n/2 ≃ 1.732n. This already improves Σ33 lower bounds for Majority function to 1.251n. The previous bound was 1.154n which follows from the work of Håstad, Jukna, and Pudlák (Comput. Complex.’95). By restricting ourselves to monotone CNFs, Enum(k, t) immediately becomes a hypergraph Turán problem. Therefore our techniques might be of independent interest in extremal combinatorics.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    39th Computational Complexity Conference (CCC 2024)

  • ISBN

    978-3-95977-331-7

  • ISSN

    1868-8969

  • e-ISSN

    1868-8969

  • Počet stran výsledku

    25

  • Strana od-do

    17

  • Název nakladatele

    Schloss Dagstuhl, Leibniz-Zentrum für Informatik

  • Místo vydání

    Dagstuhl

  • Místo konání akce

    Ann Arbor

  • Datum konání akce

    22. 7. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku