Porous pseudo-substrates for InGaN quantum well growth: Morphology, structure, and strain relaxation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F23%3A00576333" target="_blank" >RIV/68081723:_____/23:00576333 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26620/23:PU149496
Výsledek na webu
<a href="https://pubs.aip.org/aip/jap/article/134/14/145102/2916034/Porous-pseudo-substrates-for-InGaN-quantum-well" target="_blank" >https://pubs.aip.org/aip/jap/article/134/14/145102/2916034/Porous-pseudo-substrates-for-InGaN-quantum-well</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0165066" target="_blank" >10.1063/5.0165066</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Porous pseudo-substrates for InGaN quantum well growth: Morphology, structure, and strain relaxation
Popis výsledku v původním jazyce
Strain-related piezoelectric polarization is detrimental to the radiative recombination efficiency for InGaN-based long wavelength micro LEDs. In this paper, partial strain relaxation of InGaN multiple quantum wells (MQWs) on the wafer scale has been demonstrated by adopt ing a partially relaxed InGaN superlattice (SL) as the pseudo-substrate. Such a pseudo-substrate was obtained through an electro-chemicalnetching method, in which a sub-surface InGaN/InGaN superlattice was etched via threading dislocations acting as etching channels. Thendegree of strain relaxation in MQWs was studied by x-ray reciprocal space mapping, which shows an increase of the in-plane lattice constantnwith the increase of etching voltage used in fabricating the pseudo-substrate. The reduced strain in the InGaN SL pseudo-substrate was dem onstrated to be transferable to InGaN MQWs grown on top of it, and the engineering of the degree of strain relaxation via porosificationnwas achieved. The highest relaxation degree of 44.7% was achieved in the sample with the porous InGaN SL template etched under thenhighest etching voltage. Morphological and structural properties of partially relaxed InGaN MQWs samples were investigated with the com bination of atomic force and transmission electron microscopy. The increased porosity of the InGaN SL template and the newly formednsmall V-pits during QW growth are suggested as possible origins for the increased strain relaxation of InGaN MQWs.
Název v anglickém jazyce
Porous pseudo-substrates for InGaN quantum well growth: Morphology, structure, and strain relaxation
Popis výsledku anglicky
Strain-related piezoelectric polarization is detrimental to the radiative recombination efficiency for InGaN-based long wavelength micro LEDs. In this paper, partial strain relaxation of InGaN multiple quantum wells (MQWs) on the wafer scale has been demonstrated by adopt ing a partially relaxed InGaN superlattice (SL) as the pseudo-substrate. Such a pseudo-substrate was obtained through an electro-chemicalnetching method, in which a sub-surface InGaN/InGaN superlattice was etched via threading dislocations acting as etching channels. Thendegree of strain relaxation in MQWs was studied by x-ray reciprocal space mapping, which shows an increase of the in-plane lattice constantnwith the increase of etching voltage used in fabricating the pseudo-substrate. The reduced strain in the InGaN SL pseudo-substrate was dem onstrated to be transferable to InGaN MQWs grown on top of it, and the engineering of the degree of strain relaxation via porosificationnwas achieved. The highest relaxation degree of 44.7% was achieved in the sample with the porous InGaN SL template etched under thenhighest etching voltage. Morphological and structural properties of partially relaxed InGaN MQWs samples were investigated with the com bination of atomic force and transmission electron microscopy. The increased porosity of the InGaN SL template and the newly formednsmall V-pits during QW growth are suggested as possible origins for the increased strain relaxation of InGaN MQWs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018110" target="_blank" >LM2018110: Výzkumná infrastruktura CzechNanoLab</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Applied Physics
ISSN
0021-8979
e-ISSN
1089-7550
Svazek periodika
134
Číslo periodika v rámci svazku
14
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
145102
Kód UT WoS článku
001083993400005
EID výsledku v databázi Scopus
2-s2.0-85174829301