Stable a-CSi:H films with a wide range of modulus of elasticity and low internal stress
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F23%3A00571765" target="_blank" >RIV/68081731:_____/23:00571765 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26210/23:PU147420
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0257897222010684" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0257897222010684</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.surfcoat.2022.129147" target="_blank" >10.1016/j.surfcoat.2022.129147</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stable a-CSi:H films with a wide range of modulus of elasticity and low internal stress
Popis výsledku v původním jazyce
Amorphous hydrogenated silicon carbide (a-CSi:H) thin films were deposited by plasma-enhanced chemical vapor deposition using tetravinylsilane as organosilicon precursor. The mechanical properties of the thin films, namely the modulus of elasticity, hardness, and elastic recovery parameter, were determined by nanoindentation, as well as the internal stresses by scanning electron microscopy and optical profilometry. It was found that the modulus of elasticity increased from 10 to 137 GPa with increasing power (2-150 W) delivered to plasma, while the hardness increased from 1.5 to 14.5 GPa. This improvement in mechanical properties with increasing energy delivered to the plasma is related to greater fragmentation of the precursor which led to an increase in the crosslinking of the material network. The compressive internal stresses in the films reached low values of-0.04 to-0.2 GPa with increasing power (2-75 W) and an acceptable-0.5 GPa for 150 W. The elastic recovery parameter decreased with increasing power from 0.86 to 0.64, i.e., the thin films behaved more plasticity with increasing power. The modulus of elasticity and hardness were investigated in terms of the aging of the films for a period of 6 years when samples were stored under ambient conditions. No significant changes in these properties were observed. However, minor changes were observed in the indentation curves obtained for the 2 W and even less for the 10 W samples. Small changes were then also observed for the elastic recovery parameter, whose value for these samples partially decreased which may be related to postdeposition oxidation. No changes in internal stress values over time were observed. The wide range of mechanical properties of stable a-CSi:H films with low internal stress increases their application potential and their wide use as materials with tailored properties from polymer-like to tough material.
Název v anglickém jazyce
Stable a-CSi:H films with a wide range of modulus of elasticity and low internal stress
Popis výsledku anglicky
Amorphous hydrogenated silicon carbide (a-CSi:H) thin films were deposited by plasma-enhanced chemical vapor deposition using tetravinylsilane as organosilicon precursor. The mechanical properties of the thin films, namely the modulus of elasticity, hardness, and elastic recovery parameter, were determined by nanoindentation, as well as the internal stresses by scanning electron microscopy and optical profilometry. It was found that the modulus of elasticity increased from 10 to 137 GPa with increasing power (2-150 W) delivered to plasma, while the hardness increased from 1.5 to 14.5 GPa. This improvement in mechanical properties with increasing energy delivered to the plasma is related to greater fragmentation of the precursor which led to an increase in the crosslinking of the material network. The compressive internal stresses in the films reached low values of-0.04 to-0.2 GPa with increasing power (2-75 W) and an acceptable-0.5 GPa for 150 W. The elastic recovery parameter decreased with increasing power from 0.86 to 0.64, i.e., the thin films behaved more plasticity with increasing power. The modulus of elasticity and hardness were investigated in terms of the aging of the films for a period of 6 years when samples were stored under ambient conditions. No significant changes in these properties were observed. However, minor changes were observed in the indentation curves obtained for the 2 W and even less for the 10 W samples. Small changes were then also observed for the elastic recovery parameter, whose value for these samples partially decreased which may be related to postdeposition oxidation. No changes in internal stress values over time were observed. The wide range of mechanical properties of stable a-CSi:H films with low internal stress increases their application potential and their wide use as materials with tailored properties from polymer-like to tough material.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20506 - Coating and films
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Surface and Coatings Technology
ISSN
0257-8972
e-ISSN
—
Svazek periodika
459
Číslo periodika v rámci svazku
25 April
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
129147
Kód UT WoS článku
000966060300001
EID výsledku v databázi Scopus
2-s2.0-85144805429