Application of a modified semismooth Newton method to some elasto-plastic problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F12%3A00379742" target="_blank" >RIV/68145535:_____/12:00379742 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0378475412001292" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0378475412001292</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.matcom.2012.03.012" target="_blank" >10.1016/j.matcom.2012.03.012</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of a modified semismooth Newton method to some elasto-plastic problems
Popis výsledku v původním jazyce
Some elasto-plasticity models with hardening are discussed and some incremental finite element methods with different time discretisation schemes are considered. The corresponding one-time-step problems lead to variational equations with various non-linear operators. Common properties of the non-linear operators are derived and consequently a general problem is formulated. The problem can be solved by Newton-like methods. First, the semismooth Newton method is analysed. The local superlinear convergenceis proved in dependence on the finite element discretisation parameter. Then it is introduced a modified semismooth Newton method which contain suitable ?damping in each Newton iteration in addition. The determination of the damping coefficients uses the fact that the investigated problem can be formulated as a minimisation one. The method is globally convergent, independently on the discretisation parameter. Moreover the local superlinear convergence also holds. The influence of inexac
Název v anglickém jazyce
Application of a modified semismooth Newton method to some elasto-plastic problems
Popis výsledku anglicky
Some elasto-plasticity models with hardening are discussed and some incremental finite element methods with different time discretisation schemes are considered. The corresponding one-time-step problems lead to variational equations with various non-linear operators. Common properties of the non-linear operators are derived and consequently a general problem is formulated. The problem can be solved by Newton-like methods. First, the semismooth Newton method is analysed. The local superlinear convergenceis proved in dependence on the finite element discretisation parameter. Then it is introduced a modified semismooth Newton method which contain suitable ?damping in each Newton iteration in addition. The determination of the damping coefficients uses the fact that the investigated problem can be formulated as a minimisation one. The method is globally convergent, independently on the discretisation parameter. Moreover the local superlinear convergence also holds. The influence of inexac
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA105%2F09%2F1830" target="_blank" >GA105/09/1830: Víceúrovňové modelování a rentgenová tomografie v geotechnice</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics and Computers in Simulation
ISSN
0378-4754
e-ISSN
—
Svazek periodika
82
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
2004-2021
Kód UT WoS článku
000308519900021
EID výsledku v databázi Scopus
—