Using Large Language Models to Support Thematic Analysis in Empirical Legal Studies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378122%3A_____%2F23%3A00579735" target="_blank" >RIV/68378122:_____/23:00579735 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3233/FAIA230965" target="_blank" >http://dx.doi.org/10.3233/FAIA230965</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/FAIA230965" target="_blank" >10.3233/FAIA230965</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using Large Language Models to Support Thematic Analysis in Empirical Legal Studies
Popis výsledku v původním jazyce
Thematic analysis and other variants of inductive coding are widely used qualitative analytic methods within empirical legal studies (ELS). We propose a novel framework facilitating effective collaboration of a legal expert with a large language model (LLM) for generating initial codes (phase 2 of thematic analysis), searching for themes (phase 3), and classifying the data in terms of the themes (to kick-start phase 4). We employed the framework for an analysis of a dataset (n = 785) of facts descriptions from criminal court opinions regarding thefts. The goal of the analysis was to discover classes of typical thefts. Our results show that the LLM, namely OpenAI’s GPT-4, generated reasonable initial codes, and it was capable of improving the quality of the codes based on expert feedback. They also suggest that the model performed well in zero-shot classification of facts descriptions in terms of the themes. Finally, the themes autonomously discovered by the LLM appear to map fairly well to the themes arrived at by legal experts. These findings can be leveraged by legal researchers to guide their decisions in integrating LLMs into their thematic analyses, as well as other inductive coding projects.
Název v anglickém jazyce
Using Large Language Models to Support Thematic Analysis in Empirical Legal Studies
Popis výsledku anglicky
Thematic analysis and other variants of inductive coding are widely used qualitative analytic methods within empirical legal studies (ELS). We propose a novel framework facilitating effective collaboration of a legal expert with a large language model (LLM) for generating initial codes (phase 2 of thematic analysis), searching for themes (phase 3), and classifying the data in terms of the themes (to kick-start phase 4). We employed the framework for an analysis of a dataset (n = 785) of facts descriptions from criminal court opinions regarding thefts. The goal of the analysis was to discover classes of typical thefts. Our results show that the LLM, namely OpenAI’s GPT-4, generated reasonable initial codes, and it was capable of improving the quality of the codes based on expert feedback. They also suggest that the model performed well in zero-shot classification of facts descriptions in terms of the themes. Finally, the themes autonomously discovered by the LLM appear to map fairly well to the themes arrived at by legal experts. These findings can be leveraged by legal researchers to guide their decisions in integrating LLMs into their thematic analyses, as well as other inductive coding projects.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50501 - Law
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-15077S" target="_blank" >GA19-15077S: Rozdíly při ukládání trestů v postkomunistických kontinentálních právních systémech</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Legal Knowledge and Information Systems
ISBN
978-1-64368-364-5
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
197-206
Název nakladatele
IOS Press
Místo vydání
Amsterdam
Místo konání akce
Maastricht
Datum konání akce
18. 12. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—