Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Development and comparison of circulation type classifications using the COST 733 dataset and software

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F16%3A00432101" target="_blank" >RIV/68378289:_____/16:00432101 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11310/16:10328679

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1002/joc.3920" target="_blank" >http://dx.doi.org/10.1002/joc.3920</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/joc.3920" target="_blank" >10.1002/joc.3920</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Development and comparison of circulation type classifications using the COST 733 dataset and software

  • Popis výsledku v původním jazyce

    In order to examine correspondence between different methods for circulation type classification, a dataset of classification catalogs for 12 different European regions has been created using a specially developed software package. Twenty-seven basic automatic classification methods have been applied in several variants to different input datasets describing atmospheric circulation. Together with six manual classifications a total of 33 methods are available for inter-comparison. Pattern correlation, frequency time-series correlation and the adjusted Rand index have been used for comparison. Highly significant correspondence has been detected only for two clustering techniques while the remaining classification methods show surprisingly low similarity. A Monte-Carlo test with 1000 classifications of randomly defined types even shows that most of the methods are not more similar among each other than any arbitrarily chosen types. The predominant dissimilarity between the methods is interpreted to be a result of a lack of inherent structures of the input data. Only simulated annealing clustering and self-organizing maps get nearly identical results because they can optimally fit the partitioning to the outer shape of the data cloud in the phase space. Also methods based on pre-defined types come to very different results because small changes in the definition of thresholds may lead to large differences in the partitioning. It is concluded that because of the missing inner structure of the data there is no clear statistical reason to prefer any of the examined methods. For practice in synoptic climatology this means that finding a suited classification for a certain purpose may require a broad comparison of methods. The software package cost733class for development, comparison and evaluation of classifications which was developed and used in this study is available at to facilitate this task.

  • Název v anglickém jazyce

    Development and comparison of circulation type classifications using the COST 733 dataset and software

  • Popis výsledku anglicky

    In order to examine correspondence between different methods for circulation type classification, a dataset of classification catalogs for 12 different European regions has been created using a specially developed software package. Twenty-seven basic automatic classification methods have been applied in several variants to different input datasets describing atmospheric circulation. Together with six manual classifications a total of 33 methods are available for inter-comparison. Pattern correlation, frequency time-series correlation and the adjusted Rand index have been used for comparison. Highly significant correspondence has been detected only for two clustering techniques while the remaining classification methods show surprisingly low similarity. A Monte-Carlo test with 1000 classifications of randomly defined types even shows that most of the methods are not more similar among each other than any arbitrarily chosen types. The predominant dissimilarity between the methods is interpreted to be a result of a lack of inherent structures of the input data. Only simulated annealing clustering and self-organizing maps get nearly identical results because they can optimally fit the partitioning to the outer shape of the data cloud in the phase space. Also methods based on pre-defined types come to very different results because small changes in the definition of thresholds may lead to large differences in the partitioning. It is concluded that because of the missing inner structure of the data there is no clear statistical reason to prefer any of the examined methods. For practice in synoptic climatology this means that finding a suited classification for a certain purpose may require a broad comparison of methods. The software package cost733class for development, comparison and evaluation of classifications which was developed and used in this study is available at to facilitate this task.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    DG - Vědy o atmosféře, meteorologie

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Climatology

  • ISSN

    0899-8418

  • e-ISSN

  • Svazek periodika

    36

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    19

  • Strana od-do

    2673-2691

  • Kód UT WoS článku

    000377276300002

  • EID výsledku v databázi Scopus

    2-s2.0-84895141784