Stress rate and incremental principle of virtual work in finite deformations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F06%3A00045039" target="_blank" >RIV/68378297:_____/06:00045039 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stress rate and incremental principle of virtual work in finite deformations
Popis výsledku v původním jazyce
Solution of finite deformation problems is sought in the space of all deformation tensor fields. Representation of a deformation process here as a trajectory makes us possible to further classify symmetric second-order tensor fields either as points, vectors, or covectors, and, as a consequence, assign them the corresponding time derivatives. However, as the space of all deformation tensor fields has proved non-euclidean, the time derivative of vector, and covector fields along the trajectory should bedefined by the covariant derivative. This approach enables us coherently to formulate an incremental principle of virtual work, and propose the corresponding procedure in solving finite deformation problems.
Název v anglickém jazyce
Stress rate and incremental principle of virtual work in finite deformations
Popis výsledku anglicky
Solution of finite deformation problems is sought in the space of all deformation tensor fields. Representation of a deformation process here as a trajectory makes us possible to further classify symmetric second-order tensor fields either as points, vectors, or covectors, and, as a consequence, assign them the corresponding time derivatives. However, as the space of all deformation tensor fields has proved non-euclidean, the time derivative of vector, and covector fields along the trajectory should bedefined by the covariant derivative. This approach enables us coherently to formulate an incremental principle of virtual work, and propose the corresponding procedure in solving finite deformation problems.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2006
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů