The large-time energy concentration in solutions to the Navier-Stokes equations in the frequency space
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F13%3A00204172" target="_blank" >RIV/68407700:21110/13:00204172 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jmaa.2012.11.004" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2012.11.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2012.11.004" target="_blank" >10.1016/j.jmaa.2012.11.004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The large-time energy concentration in solutions to the Navier-Stokes equations in the frequency space
Popis výsledku v původním jazyce
In the paper we study the large-time behavior of solutions to the Navier-Stokes equations in the frequency space. We describe in detail the large-time energy concentration which occurs in every (turbulent) solution. If the energy of the solution decreases exponentially then it concentrates in frequencies localized in an annulus in the frequency space. The annulus can be taken arbitrarily narrow and its diameter determines the rate of the exponential decay. All the other solutions are characterized by the concentration of the energy in the frequencies localized in a ball with an arbitrarily small diameter centered in the origin of the coordinates. It will follow from the presented results that the frequencies outside the annulus or the ball and especially the higher frequencies die out very quickly. We will further observe the concentration occurring in any time derivative of the solution or in the vorticity and its time derivatives with the same annulus or the ball for the particular s
Název v anglickém jazyce
The large-time energy concentration in solutions to the Navier-Stokes equations in the frequency space
Popis výsledku anglicky
In the paper we study the large-time behavior of solutions to the Navier-Stokes equations in the frequency space. We describe in detail the large-time energy concentration which occurs in every (turbulent) solution. If the energy of the solution decreases exponentially then it concentrates in frequencies localized in an annulus in the frequency space. The annulus can be taken arbitrarily narrow and its diameter determines the rate of the exponential decay. All the other solutions are characterized by the concentration of the energy in the frequencies localized in a ball with an arbitrarily small diameter centered in the origin of the coordinates. It will follow from the presented results that the frequencies outside the annulus or the ball and especially the higher frequencies die out very quickly. We will further observe the concentration occurring in any time derivative of the solution or in the vorticity and its time derivatives with the same annulus or the ball for the particular s
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Analysis and Its Applications
ISSN
0022-247X
e-ISSN
—
Svazek periodika
400
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
689-709
Kód UT WoS článku
000314075600034
EID výsledku v databázi Scopus
—