Mathematical Model and Computational Studies of Discrete Dislocation Dynamics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F15%3A00236071" target="_blank" >RIV/68407700:21110/15:00236071 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21340/15:00236071
Výsledek na webu
<a href="http://www.iaeng.org/IJAM/issues_v45/issue_3/index.html" target="_blank" >http://www.iaeng.org/IJAM/issues_v45/issue_3/index.html</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mathematical Model and Computational Studies of Discrete Dislocation Dynamics
Popis výsledku v původním jazyce
This contribution deals with the numerical simulation of dislocation dynamics, which is a topic belonging to the field of solid state physics. Dislocations are modelled as line defects in crystalline lattice causing the disturbance of the regularity of the crystallographic arrangement of atoms. From the mathematical point of view, dislocations are defined as smooth closed or open planar curves, which evolve in time, and their motion is driven by the equation for the mean curvature flow stating that thenormal velocity is proportional to the mean curvature and the sum of all acting force terms. In this paper, we describe the family of evolving curves by the parametric approach, and the system of PDEs arising from the mean curvature motion law is solvedby semi-implicit scheme with spatial discretization based on the flowing finite volume method. Additionally, we enhance the performance and the numerical stability of the algorithm by adding a tangential term to the motion law. The presen
Název v anglickém jazyce
Mathematical Model and Computational Studies of Discrete Dislocation Dynamics
Popis výsledku anglicky
This contribution deals with the numerical simulation of dislocation dynamics, which is a topic belonging to the field of solid state physics. Dislocations are modelled as line defects in crystalline lattice causing the disturbance of the regularity of the crystallographic arrangement of atoms. From the mathematical point of view, dislocations are defined as smooth closed or open planar curves, which evolve in time, and their motion is driven by the equation for the mean curvature flow stating that thenormal velocity is proportional to the mean curvature and the sum of all acting force terms. In this paper, we describe the family of evolving curves by the parametric approach, and the system of PDEs arising from the mean curvature motion law is solvedby semi-implicit scheme with spatial discretization based on the flowing finite volume method. Additionally, we enhance the performance and the numerical stability of the algorithm by adding a tangential term to the motion law. The presen
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP108%2F12%2F1463" target="_blank" >GAP108/12/1463: Dvouúrovňová diskrétně-spojitá dislokační dynamika</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IAENG International Journal of Applied Mathematics
ISSN
1992-9978
e-ISSN
—
Svazek periodika
45
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
JP - Japonsko
Počet stran výsledku
10
Strana od-do
198-207
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-84938933747