Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Synthetic diamond thin films: bridging inorganic and organic worlds

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F18%3A00323984" target="_blank" >RIV/68407700:21110/18:00323984 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21230/18:00323984

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Synthetic diamond thin films: bridging inorganic and organic worlds

  • Popis výsledku v původním jazyce

    Diamond technology is extremely successful in reaching or even exceeding the individual requirements of research and industrial interests in many fields ranging from tribology, electronics, optics, biotechnology or spintronics. Combination of diamond extraordinary properties, i.e. wide optical transparency, chemical and physical stability, mechanical and radiation resistance, biocompatibility, etc., makes diamond as the functional inorganic material for interdisciplinary fields, especially for bridging inorganic and organic worlds. In this manner, diamond bulk and surface properties are tailorable using appropriate deposition and treatment processes. In this contribution, we will present our recent studies on real-time monitoring of diamond electronic properties after adsorption or interaction of its surface with selected organic compounds, biofilms, and living cells. Field effect transistor based on surface-conductive hydrogen-terminated diamond channels will be shown as a simple device to recognize adhesion and desorption of biomolecules and living cells. The transfer characteristics of a diamond-based solution-gated field effect transistor (SGFET) revealed voltage shift in transfer characteristics corresponding to the exposure of buffer solutions (Phosphate, HEPES, McIlvaine buffer) or culture media (fibronectin, albumin, and fetal bovine serum) [1]. The SGFET gate currents change up to 2 orders in magnitude and fully recover to initial values after the SAOS2 cell adhesion and detachments, respectively [2]. Such SGFET are still functional after gamma irradiation (60Co) at doses 1 – 5 Gy and suitable for real-time electronic

  • Název v anglickém jazyce

    Synthetic diamond thin films: bridging inorganic and organic worlds

  • Popis výsledku anglicky

    Diamond technology is extremely successful in reaching or even exceeding the individual requirements of research and industrial interests in many fields ranging from tribology, electronics, optics, biotechnology or spintronics. Combination of diamond extraordinary properties, i.e. wide optical transparency, chemical and physical stability, mechanical and radiation resistance, biocompatibility, etc., makes diamond as the functional inorganic material for interdisciplinary fields, especially for bridging inorganic and organic worlds. In this manner, diamond bulk and surface properties are tailorable using appropriate deposition and treatment processes. In this contribution, we will present our recent studies on real-time monitoring of diamond electronic properties after adsorption or interaction of its surface with selected organic compounds, biofilms, and living cells. Field effect transistor based on surface-conductive hydrogen-terminated diamond channels will be shown as a simple device to recognize adhesion and desorption of biomolecules and living cells. The transfer characteristics of a diamond-based solution-gated field effect transistor (SGFET) revealed voltage shift in transfer characteristics corresponding to the exposure of buffer solutions (Phosphate, HEPES, McIlvaine buffer) or culture media (fibronectin, albumin, and fetal bovine serum) [1]. The SGFET gate currents change up to 2 orders in magnitude and fully recover to initial values after the SAOS2 cell adhesion and detachments, respectively [2]. Such SGFET are still functional after gamma irradiation (60Co) at doses 1 – 5 Gy and suitable for real-time electronic

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10610 - Biophysics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů