Determination and Representation of Turbocharger Thermodynamic Efficiencies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F16%3A00308066" target="_blank" >RIV/68407700:21220/16:00308066 - isvavai.cz</a>
Výsledek na webu
<a href="http://papers.sae.org/2016-01-1042" target="_blank" >http://papers.sae.org/2016-01-1042</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4271/2016-01-1042" target="_blank" >10.4271/2016-01-1042</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Determination and Representation of Turbocharger Thermodynamic Efficiencies
Popis výsledku v původním jazyce
The boost pressure demands call for high efficiency turbochargers. Perfect matching to an engine and controlling in operation is a prerequisite, especially if highly diluted mixture is used. The main impact on four-stroke engine efficiency is performed via gas exchange work, Correct turbocharger representation, usually performed by maps, should be delivered by turbocharger manufacturers and applied in simulation optimizations. The robust calibration methods are required for fast-running real time simulations used for model-based control. The paper clarifies the relations between apparent and real turbocharger isentropic efficiencies at steady-flow testbed and their impact on engine cycle optimization by simulation. Simple procedures excluding the impact of heat transfer inside a turbocharger are described. The described methods are based on the use of overall turbocharger efficiency. If details are needed, cold turbine flow tests and direct evaluation of compressor power using Eulerian theorem should be applied. Reynolds number influence should be taken into account. The regression model of turbine shaft heat transfer is used for correction of friction losses. The possibilities of turbine map measurement are analyzed for achieving wide range of blade speed ratio values using different turbine inlet temperature. The reasons for turbine physical model instead of map-based approach are explained on several specific examples. Apparent turbine efficiency, measured during engine tests, and possibilities to correct it by simulation are illustrated using examples of different exhaust systems with high level of pressure pulses.
Název v anglickém jazyce
Determination and Representation of Turbocharger Thermodynamic Efficiencies
Popis výsledku anglicky
The boost pressure demands call for high efficiency turbochargers. Perfect matching to an engine and controlling in operation is a prerequisite, especially if highly diluted mixture is used. The main impact on four-stroke engine efficiency is performed via gas exchange work, Correct turbocharger representation, usually performed by maps, should be delivered by turbocharger manufacturers and applied in simulation optimizations. The robust calibration methods are required for fast-running real time simulations used for model-based control. The paper clarifies the relations between apparent and real turbocharger isentropic efficiencies at steady-flow testbed and their impact on engine cycle optimization by simulation. Simple procedures excluding the impact of heat transfer inside a turbocharger are described. The described methods are based on the use of overall turbocharger efficiency. If details are needed, cold turbine flow tests and direct evaluation of compressor power using Eulerian theorem should be applied. Reynolds number influence should be taken into account. The regression model of turbine shaft heat transfer is used for correction of friction losses. The possibilities of turbine map measurement are analyzed for achieving wide range of blade speed ratio values using different turbine inlet temperature. The reasons for turbine physical model instead of map-based approach are explained on several specific examples. Apparent turbine efficiency, measured during engine tests, and possibilities to correct it by simulation are illustrated using examples of different exhaust systems with high level of pressure pulses.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
20303 - Thermodynamics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Society of Automotive Engineers Technical Paper Series
ISSN
0148-7191
e-ISSN
0148-7191
Svazek periodika
2016
Číslo periodika v rámci svazku
01
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-84975263348