Railway Wheelset Active Control and Stability via Higher Order Neural Units
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F23%3A00366597" target="_blank" >RIV/68407700:21220/23:00366597 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60076658:12310/23:43907331
Výsledek na webu
<a href="https://doi.org/10.1109/TMECH.2023.3258909" target="_blank" >https://doi.org/10.1109/TMECH.2023.3258909</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TMECH.2023.3258909" target="_blank" >10.1109/TMECH.2023.3258909</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Railway Wheelset Active Control and Stability via Higher Order Neural Units
Popis výsledku v původním jazyce
This article investigates an unconventional approach to solving the control of lateral displacement for railway bogie wheelsets using recurrent higher order neural units (HONUs). Although studies addressing control of independently rotating wheelsets have shown promising results, they are rarely applied by railway manufacturers. Research and developments in modern bogie design are trending toward active yaw control design as an extension to conventional wheelsets mechanics, particularly for higher speeds. We investigate a model-reference architecture for active control via setpoint tracking of lateral displacement. Then, a new HONU sliding mode architecture is derived to solve convergence for zero lateral displacements in higher running speeds which is a more profoundly complex issue in maintaining minimal hunting motion. Starting from the property of nonlinear polynomial architecture of HONUs with in-parameter linearity, we derive a time-variant state-space representation via nonlinear identical decomposition. Then, an input-to-state stability (ISS) approach is applied to prove the local asymptotic convergence of the applied algorithm in each state point and the bounded-input-bounded-state stability of the entire nonlinear adaptive control loop. Using ISS theory, we also prove the global asymptotic stability of the HONU sliding mode controller for the actively controlled wheelset system. The techniques are validated by simulations and a real roller rig system.
Název v anglickém jazyce
Railway Wheelset Active Control and Stability via Higher Order Neural Units
Popis výsledku anglicky
This article investigates an unconventional approach to solving the control of lateral displacement for railway bogie wheelsets using recurrent higher order neural units (HONUs). Although studies addressing control of independently rotating wheelsets have shown promising results, they are rarely applied by railway manufacturers. Research and developments in modern bogie design are trending toward active yaw control design as an extension to conventional wheelsets mechanics, particularly for higher speeds. We investigate a model-reference architecture for active control via setpoint tracking of lateral displacement. Then, a new HONU sliding mode architecture is derived to solve convergence for zero lateral displacements in higher running speeds which is a more profoundly complex issue in maintaining minimal hunting motion. Starting from the property of nonlinear polynomial architecture of HONUs with in-parameter linearity, we derive a time-variant state-space representation via nonlinear identical decomposition. Then, an input-to-state stability (ISS) approach is applied to prove the local asymptotic convergence of the applied algorithm in each state point and the bounded-input-bounded-state stability of the entire nonlinear adaptive control loop. Using ISS theory, we also prove the global asymptotic stability of the HONU sliding mode controller for the actively controlled wheelset system. The techniques are validated by simulations and a real roller rig system.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE-ASME TRANSACTIONS ON MECHATRONICS
ISSN
1083-4435
e-ISSN
1941-014X
Svazek periodika
28
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
2964-2975
Kód UT WoS článku
000980408200001
EID výsledku v databázi Scopus
2-s2.0-85159718436