Hybrid Evolution of Heterogeneous Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A00145831" target="_blank" >RIV/68407700:21230/08:00145831 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hybrid Evolution of Heterogeneous Neural Networks
Popis výsledku v původním jazyce
In this paper we are describing experiments and results of applications of the continual evolution algorithm to construction and optimization of recurrent neural networks with heterogeneous units. Our algorithm is a hybrid genetic algorithm with sequential individuals replacement, varibale population size and age-based probability control functions. Short introduction to main idea of the algorithm is given. We describe some new features implemented into the algorithm, the encoding of individuals, crossover, and mutation operators. The behavior of population during an evolutionary process is studied on atificial benchmark data sets. Results of the experiments confirm the theoretical properties of the algorithm.
Název v anglickém jazyce
Hybrid Evolution of Heterogeneous Neural Networks
Popis výsledku anglicky
In this paper we are describing experiments and results of applications of the continual evolution algorithm to construction and optimization of recurrent neural networks with heterogeneous units. Our algorithm is a hybrid genetic algorithm with sequential individuals replacement, varibale population size and age-based probability control functions. Short introduction to main idea of the algorithm is given. We describe some new features implemented into the algorithm, the encoding of individuals, crossover, and mutation operators. The behavior of population during an evolutionary process is studied on atificial benchmark data sets. Results of the experiments confirm the theoretical properties of the algorithm.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Artificial Neural Networks - ICANN 2008, PT I
ISBN
978-3-540-87535-2
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
9
Strana od-do
—
Název nakladatele
Springer
Místo vydání
Heidelberg
Místo konání akce
Prague
Datum konání akce
3. 9. 2008
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000259566200044