Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Active Shape Model and Linear Predictors for Face Association Refinement

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F09%3A00158313" target="_blank" >RIV/68407700:21230/09:00158313 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Active Shape Model and Linear Predictors for Face Association Refinement

  • Popis výsledku v původním jazyce

    This paper summarizes results of face association experiments on real low resolution data from airport and the Labeled faces in the Wild (LFW) database. The objective of experiments is to evaluate different face alignment methods and their contribution to face association as such. The first alignment method used is Sequential Learnable Linear Predictor (SLLiP), originally developed for object tracking. The second method is well known face alignment method Active Shape Model (ASM). Both methods are compared versus face association without alignment. In case of high resolution LFW database the ASM rapidly increases the association results, on the other hand for real low resolution airport data the SLLiP method brought more improvement than ASM.

  • Název v anglickém jazyce

    Active Shape Model and Linear Predictors for Face Association Refinement

  • Popis výsledku anglicky

    This paper summarizes results of face association experiments on real low resolution data from airport and the Labeled faces in the Wild (LFW) database. The objective of experiments is to evaluate different face alignment methods and their contribution to face association as such. The first alignment method used is Sequential Learnable Linear Predictor (SLLiP), originally developed for object tracking. The second method is well known face alignment method Active Shape Model (ASM). Both methods are compared versus face association without alignment. In case of high resolution LFW database the ASM rapidly increases the association results, on the other hand for real low resolution airport data the SLLiP method brought more improvement than ASM.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1M0567" target="_blank" >1M0567: Centrum aplikované kybernetiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    The Ninth IEEE International Workshop on Visual Surveillance 2009

  • ISBN

    978-1-4244-4441-0

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    1193-1200

  • Název nakladatele

    IEEE Computer Society Press

  • Místo vydání

    Los Alamitos

  • Místo konání akce

    Kyoto

  • Datum konání akce

    3. 10. 2009

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku