Precise Modeling of Emerging Electronic Structures by Artificial Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00198116" target="_blank" >RIV/68407700:21230/12:00198116 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Precise Modeling of Emerging Electronic Structures by Artificial Neural Networks
Popis výsledku v původním jazyce
Nowadays, there are many emerging electronic structures for which their nonlinear models for computeraided design are necessary, especially for the ones from the areas of nanoelectronics and microwave techniques. However, for such structures, sufficiently accurate analytic models are mostly unavailable. This is partially caused by the fact that the physical principles of the element operation are sometimes not fully clear (especially for quantum devices), and also by bizarre characteristics of some of the elements (typically with irregularities and a hysteresis in parts of characteristics, or by negative differential conductances that are typical for the microwave transistors). In such cases, models based on artificial neural networks are necessary anduseful for these elements. Majority of the elements can be characterized with a single artificial neural network. However, for certain kinds of elements, a cooperation of more artificial neural networks is necessary. This case is describ
Název v anglickém jazyce
Precise Modeling of Emerging Electronic Structures by Artificial Neural Networks
Popis výsledku anglicky
Nowadays, there are many emerging electronic structures for which their nonlinear models for computeraided design are necessary, especially for the ones from the areas of nanoelectronics and microwave techniques. However, for such structures, sufficiently accurate analytic models are mostly unavailable. This is partially caused by the fact that the physical principles of the element operation are sometimes not fully clear (especially for quantum devices), and also by bizarre characteristics of some of the elements (typically with irregularities and a hysteresis in parts of characteristics, or by negative differential conductances that are typical for the microwave transistors). In such cases, models based on artificial neural networks are necessary anduseful for these elements. Majority of the elements can be characterized with a single artificial neural network. However, for certain kinds of elements, a cooperation of more artificial neural networks is necessary. This case is describ
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP102%2F10%2F1614" target="_blank" >GAP102/10/1614: Memristivní, memkapacitivní a meminduktivní systémy: základní výzkum, modelování a simulace</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
World Congress on Engineering and Computer Science 2012
ISBN
978-988-19252-4-4
ISSN
2078-0958
e-ISSN
—
Počet stran výsledku
4
Strana od-do
847-850
Název nakladatele
The International Association of Engineers IAENG
Místo vydání
Hong Kong
Místo konání akce
San Francisco
Datum konání akce
24. 10. 2012
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—