Autoregressive causal relation: Digital filtering approach to causality measures in frequency domain
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F13%3A00208240" target="_blank" >RIV/68407700:21230/13:00208240 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S1051200413000857" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1051200413000857</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dsp.2013.04.006" target="_blank" >10.1016/j.dsp.2013.04.006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Autoregressive causal relation: Digital filtering approach to causality measures in frequency domain
Popis výsledku v původním jazyce
A novel measure of the Autoregressive Causal Relation based on a multivariate autoregressive model is proposed. It reveals the strength of the connections among a simultaneous time series and also the direction of the information flow. It is defined in the frequency domain, similar to the formerly published methods such as: Directed Transfer Function, Direct Directed Transfer Function, Partial Directed Coherence, and Generalized Partial Directed Coherence. Compared to the Granger causality concept, frequency decomposition extends the possibility to reveal the frequency rhythms participating on the information flow in causal relations. The Autoregressive Causal Relation decomposes diagonal elements of a spectral matrix and enables a user to distinguishbetween direct and indirect causal relations. The main advantage lies in its definition using power spectral densities, thus allowing for a clear interpretation of strength of causal relation in meaningful physical terms. The causal measu
Název v anglickém jazyce
Autoregressive causal relation: Digital filtering approach to causality measures in frequency domain
Popis výsledku anglicky
A novel measure of the Autoregressive Causal Relation based on a multivariate autoregressive model is proposed. It reveals the strength of the connections among a simultaneous time series and also the direction of the information flow. It is defined in the frequency domain, similar to the formerly published methods such as: Directed Transfer Function, Direct Directed Transfer Function, Partial Directed Coherence, and Generalized Partial Directed Coherence. Compared to the Granger causality concept, frequency decomposition extends the possibility to reveal the frequency rhythms participating on the information flow in causal relations. The Autoregressive Causal Relation decomposes diagonal elements of a spectral matrix and enables a user to distinguishbetween direct and indirect causal relations. The main advantage lies in its definition using power spectral densities, thus allowing for a clear interpretation of strength of causal relation in meaningful physical terms. The causal measu
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GD102%2F08%2FH008" target="_blank" >GD102/08/H008: Analýza a modelování biomedicínských a řečových signálů</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Digital Signal Processing
ISSN
1051-2004
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
1756-1766
Kód UT WoS článku
000323855500039
EID výsledku v databázi Scopus
—