Model-Based Airflow Controller Design for Fire Ventilation in Road Tunnels
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00300804" target="_blank" >RIV/68407700:21230/16:00300804 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21720/16:00300804
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.tust.2016.08.006" target="_blank" >http://dx.doi.org/10.1016/j.tust.2016.08.006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tust.2016.08.006" target="_blank" >10.1016/j.tust.2016.08.006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Model-Based Airflow Controller Design for Fire Ventilation in Road Tunnels
Popis výsledku v původním jazyce
This paper describes a new approach to design the proportional-integral-derivative (PID) controller of the longitudinal airflow velocity in road tunnels for fire situations. Our work shows clearly that the use of a proper model provides valid data for model-based tuning of tunnel controllers, which is demonstrated by real tunnel tests. The design uses the simplified mathematical model of airflow dynamics based on Bernoulli and continuity equations, which describe the airflow dynamics in one dimension. Optimizing controller parameters on site is very time consuming and this problem increases in the case of complex tunnels with several entrance and exit ramps, which typically have occurrences of traffic congestion. Our approach is based on the design of the controller through simulations, which use the mathematical model of airflow velocity in the tunnel. This approach spares a lot of work and time with the controller tuning within tunnel tests. Moreover, it can discover potential problems, which can occur during real instances of fire in the tunnel. The additional advantage of this approach is a possibility to simulate a scenario of errors and failures of some devices, which are important for reliable control of longitudinal airflow velocity. Although this approach is focused primarily on complex road tunnels, due to their complexity and significant time savings with the controller tuning, it can be also used for simpler tunnels with no ramps (usually highway tunnels) where the design of the airflow controller is not as complex compared to the case of road tunnels. This paper also includes a case study of the airflow controller design for the Blanka tunnel complex in Prague, Czech Republic, which is the largest city tunnel in Central Europe.
Název v anglickém jazyce
Model-Based Airflow Controller Design for Fire Ventilation in Road Tunnels
Popis výsledku anglicky
This paper describes a new approach to design the proportional-integral-derivative (PID) controller of the longitudinal airflow velocity in road tunnels for fire situations. Our work shows clearly that the use of a proper model provides valid data for model-based tuning of tunnel controllers, which is demonstrated by real tunnel tests. The design uses the simplified mathematical model of airflow dynamics based on Bernoulli and continuity equations, which describe the airflow dynamics in one dimension. Optimizing controller parameters on site is very time consuming and this problem increases in the case of complex tunnels with several entrance and exit ramps, which typically have occurrences of traffic congestion. Our approach is based on the design of the controller through simulations, which use the mathematical model of airflow velocity in the tunnel. This approach spares a lot of work and time with the controller tuning within tunnel tests. Moreover, it can discover potential problems, which can occur during real instances of fire in the tunnel. The additional advantage of this approach is a possibility to simulate a scenario of errors and failures of some devices, which are important for reliable control of longitudinal airflow velocity. Although this approach is focused primarily on complex road tunnels, due to their complexity and significant time savings with the controller tuning, it can be also used for simpler tunnels with no ramps (usually highway tunnels) where the design of the airflow controller is not as complex compared to the case of road tunnels. This paper also includes a case study of the airflow controller design for the Blanka tunnel complex in Prague, Czech Republic, which is the largest city tunnel in Central Europe.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BC - Teorie a systémy řízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED2.1.00%2F03.0091" target="_blank" >ED2.1.00/03.0091: Univerzitní centrum energeticky efektivních budov (UCEEB)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Tunnelling and Underground Space Technology
ISSN
0886-7798
e-ISSN
—
Svazek periodika
60
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
121-134
Kód UT WoS článku
000387834900012
EID výsledku v databázi Scopus
2-s2.0-84983806495