Validation and Experimental Testing of Observers for Robust GNSS-Aided Inertial Navigation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00302461" target="_blank" >RIV/68407700:21230/16:00302461 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.intechopen.com/books/recent-advances-in-robotic-systems/validation-and-experimental-testing-of-observers-for-robust-gnss-aided-inertial-navigation" target="_blank" >http://www.intechopen.com/books/recent-advances-in-robotic-systems/validation-and-experimental-testing-of-observers-for-robust-gnss-aided-inertial-navigation</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5772/63575" target="_blank" >10.5772/63575</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Validation and Experimental Testing of Observers for Robust GNSS-Aided Inertial Navigation
Popis výsledku v původním jazyce
This chapter is the study of state estimators for robust navigation. Navigation of vehicles is a vast field with multiple decades of research. The main aim is to estimate position, linear velocity, and attitude (PVA) under all dynamics, motions, and conditions via data fusion. The state estimation problem will be considered from two different perspectives using the same kinematic model. First, the extended Kalman filter (EKF) will be reviewed, as an example of a stochastic approach; second, a recent nonlinear observer will be considered as a deterministic case. A comparative study of strapdown inertial navigation methods for estimating PVA of aerial vehicles fusing inertial sensors with global navigation satellite system (GNSS)-based positioning will be presented. The focus will be on the loosely coupled integration methods and performance analysis to compare these methods in terms of their stability, robustness to vibrations, and disturbances in measurements.
Název v anglickém jazyce
Validation and Experimental Testing of Observers for Robust GNSS-Aided Inertial Navigation
Popis výsledku anglicky
This chapter is the study of state estimators for robust navigation. Navigation of vehicles is a vast field with multiple decades of research. The main aim is to estimate position, linear velocity, and attitude (PVA) under all dynamics, motions, and conditions via data fusion. The state estimation problem will be considered from two different perspectives using the same kinematic model. First, the extended Kalman filter (EKF) will be reviewed, as an example of a stochastic approach; second, a recent nonlinear observer will be considered as a deterministic case. A comparative study of strapdown inertial navigation methods for estimating PVA of aerial vehicles fusing inertial sensors with global navigation satellite system (GNSS)-based positioning will be presented. The focus will be on the loosely coupled integration methods and performance analysis to compare these methods in terms of their stability, robustness to vibrations, and disturbances in measurements.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
JW - Navigace, spojení, detekce a protiopatření
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Recent Advances in Robotic Systems
ISBN
978-953-51-2570-9
Počet stran výsledku
284
Strana od-do
1-284
Počet stran knihy
292
Název nakladatele
InTech - Open Access Company (InTech Europe)
Místo vydání
Rijeka
Kód UT WoS kapitoly
—