Finding an optimal Nash equilibrium to the multi-agent project scheduling problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00311298" target="_blank" >RIV/68407700:21230/17:00311298 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs10951-017-0516-2" target="_blank" >https://link.springer.com/article/10.1007%2Fs10951-017-0516-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10951-017-0516-2" target="_blank" >10.1007/s10951-017-0516-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Finding an optimal Nash equilibrium to the multi-agent project scheduling problem
Popis výsledku v původním jazyce
Large projects often involve a set of contractors, each in charge of a part of the project. In this paper, we assume that every contractor is self-interested and can control the duration of his/her activities, which can be shortened up to an incompressible limit, by gathering extra resources at a given cost. In this context, the resulting project makespan depends on all the contractors’ decisions. The customer of the project is interested in a short project makespan and offers a reward, proportional to the project makespan reduction, to be shared by the contractors. In practice, either the reward sharing policy results from an upfront agreement or payments are freely allocated by the customer. Each contractor is only interested in the maximization of his/her profit and behaves accordingly. This paper addresses the problem of finding a Nash equilibrium and a sharing policy that minimize the project makespan. The aim is to help the customer to determine the duration of the activities and the reward sharing policy such that no agent has an incentive to unilaterally deviate from this solution. We show that this problem is NP-hard and how it can be modeled and solved by mixed integer linear programming. Computational analysis on large instances proves the effectiveness of our approach. Based on an empirical investigation of the influence of reward sharing policies on the project makespan, the paper provides new insight into how a project’s customer should offer rewards to the contractors.
Název v anglickém jazyce
Finding an optimal Nash equilibrium to the multi-agent project scheduling problem
Popis výsledku anglicky
Large projects often involve a set of contractors, each in charge of a part of the project. In this paper, we assume that every contractor is self-interested and can control the duration of his/her activities, which can be shortened up to an incompressible limit, by gathering extra resources at a given cost. In this context, the resulting project makespan depends on all the contractors’ decisions. The customer of the project is interested in a short project makespan and offers a reward, proportional to the project makespan reduction, to be shared by the contractors. In practice, either the reward sharing policy results from an upfront agreement or payments are freely allocated by the customer. Each contractor is only interested in the maximization of his/her profit and behaves accordingly. This paper addresses the problem of finding a Nash equilibrium and a sharing policy that minimize the project makespan. The aim is to help the customer to determine the duration of the activities and the reward sharing policy such that no agent has an incentive to unilaterally deviate from this solution. We show that this problem is NP-hard and how it can be modeled and solved by mixed integer linear programming. Computational analysis on large instances proves the effectiveness of our approach. Based on an empirical investigation of the influence of reward sharing policies on the project makespan, the paper provides new insight into how a project’s customer should offer rewards to the contractors.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-23509S" target="_blank" >GA16-23509S: Flexibilní rozvrhovací a optimalizační algoritmy pro distribuované systémy reálného času</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Scheduling
ISSN
1094-6136
e-ISSN
1099-1425
Svazek periodika
20
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
475-491
Kód UT WoS článku
000412544900004
EID výsledku v databázi Scopus
2-s2.0-85015958906