Price of anarchy and price of stability in multi-agent project scheduling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F20%3A00334717" target="_blank" >RIV/68407700:21730/20:00334717 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10479-019-03235-w" target="_blank" >https://doi.org/10.1007/s10479-019-03235-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10479-019-03235-w" target="_blank" >10.1007/s10479-019-03235-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Price of anarchy and price of stability in multi-agent project scheduling
Popis výsledku v původním jazyce
We consider a project scheduling environment in which the activities are partitioned among a set of agents. The owner of each activity can decide its length, which is linearly related to its cost within a minimum (crash) and a maximum (normal) length. For each day the project makespan is reduced with respect to its normal value, a reward is offered to the agents, and each agent receives a given ratio of the reward. As in classical game theory, we assume that the agents’ parameters are common knowledge. We study the Nash equilibria of the corresponding non-cooperative game as a desired state where no agent is motivated to change his/her decision. Regarding project makespan as an overall measure of efficiency, here we consider the worst and the best Nash equilibria (i.e., for which makespan is maximum and, respectively, minimum among Nash equilibria). We show that the problem of finding the worst Nash equilibrium is NP-hard (finding the best Nash equilibrium is already known to be strongly NP-hard), and propose an ILP formulation for its computation. We then investigate the values of the price of anarchy and the price of stability in a large sample of realistic size problems and get useful insights for the project owner.
Název v anglickém jazyce
Price of anarchy and price of stability in multi-agent project scheduling
Popis výsledku anglicky
We consider a project scheduling environment in which the activities are partitioned among a set of agents. The owner of each activity can decide its length, which is linearly related to its cost within a minimum (crash) and a maximum (normal) length. For each day the project makespan is reduced with respect to its normal value, a reward is offered to the agents, and each agent receives a given ratio of the reward. As in classical game theory, we assume that the agents’ parameters are common knowledge. We study the Nash equilibria of the corresponding non-cooperative game as a desired state where no agent is motivated to change his/her decision. Regarding project makespan as an overall measure of efficiency, here we consider the worst and the best Nash equilibria (i.e., for which makespan is maximum and, respectively, minimum among Nash equilibria). We show that the problem of finding the worst Nash equilibrium is NP-hard (finding the best Nash equilibrium is already known to be strongly NP-hard), and propose an ILP formulation for its computation. We then investigate the values of the price of anarchy and the price of stability in a large sample of realistic size problems and get useful insights for the project owner.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000466" target="_blank" >EF15_003/0000466: Umělá inteligence a uvažování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Operations Research
ISSN
0254-5330
e-ISSN
1572-9338
Svazek periodika
285
Číslo periodika v rámci svazku
April
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
97-119
Kód UT WoS článku
000527867200005
EID výsledku v databázi Scopus
2-s2.0-85064658450