Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Simple approximations of semialgebraic sets and their applications to control

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00311735" target="_blank" >RIV/68407700:21230/17:00311735 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.automatica.2016.11.021" target="_blank" >http://dx.doi.org/10.1016/j.automatica.2016.11.021</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.automatica.2016.11.021" target="_blank" >10.1016/j.automatica.2016.11.021</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Simple approximations of semialgebraic sets and their applications to control

  • Popis výsledku v původním jazyce

    Many uncertainty sets encountered in control systems analysis and design can be expressed in terms of semialgebraic sets, that is as the intersection of sets described by means of polynomial inequalities. Important examples are for instance the Schur and Hurwitz stability domains. These sets often have very complicated shapes (nonconvex, and even non-connected), which render difficult their manipulation. It is therefore of considerable importance to find simple-enough approximations of these sets, able to capture their main characteristics while maintaining a low level of complexity. For these reasons, in the past years several convex approximations, based for instance on hyperrectangles, polytopes, or ellipsoids have been proposed. In this work, we move a step further, and propose possibly nonconvex yet still simple approximations, based on a small volume polynomial superlevel set of a single positive polynomial of given degree. We show how these sets can be easily approximated by minimizing the L1 norm of the polynomial over the semialgebraic set, subject to positivity constraints. Intuitively, this corresponds to the trace minimization heuristic commonly encountered in minimum volume ellipsoid problems. From a computational viewpoint, we design a hierarchy of convex linear matrix inequality problems to generate these approximations, and we provide theoretically rigorous convergence results, in the sense that the hierarchy of outer approximations converges in volume (or, equivalently, almost everywhere and almost uniformly) to the original set. Finally, we show how the concept of polynomial superlevel set can be used to generate samples uniformly distributed on a given semialgebraic set. The efficiency of the proposed approach is demonstrated by different numerical examples.

  • Název v anglickém jazyce

    Simple approximations of semialgebraic sets and their applications to control

  • Popis výsledku anglicky

    Many uncertainty sets encountered in control systems analysis and design can be expressed in terms of semialgebraic sets, that is as the intersection of sets described by means of polynomial inequalities. Important examples are for instance the Schur and Hurwitz stability domains. These sets often have very complicated shapes (nonconvex, and even non-connected), which render difficult their manipulation. It is therefore of considerable importance to find simple-enough approximations of these sets, able to capture their main characteristics while maintaining a low level of complexity. For these reasons, in the past years several convex approximations, based for instance on hyperrectangles, polytopes, or ellipsoids have been proposed. In this work, we move a step further, and propose possibly nonconvex yet still simple approximations, based on a small volume polynomial superlevel set of a single positive polynomial of given degree. We show how these sets can be easily approximated by minimizing the L1 norm of the polynomial over the semialgebraic set, subject to positivity constraints. Intuitively, this corresponds to the trace minimization heuristic commonly encountered in minimum volume ellipsoid problems. From a computational viewpoint, we design a hierarchy of convex linear matrix inequality problems to generate these approximations, and we provide theoretically rigorous convergence results, in the sense that the hierarchy of outer approximations converges in volume (or, equivalently, almost everywhere and almost uniformly) to the original set. Finally, we show how the concept of polynomial superlevel set can be used to generate samples uniformly distributed on a given semialgebraic set. The efficiency of the proposed approach is demonstrated by different numerical examples.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Automatica

  • ISSN

    0005-1098

  • e-ISSN

    1873-2836

  • Svazek periodika

    78

  • Číslo periodika v rámci svazku

    April

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    9

  • Strana od-do

    110-118

  • Kód UT WoS článku

    000398010500013

  • EID výsledku v databázi Scopus

    2-s2.0-85010460383