Simple approximations of semialgebraic sets and their applications to control
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00311735" target="_blank" >RIV/68407700:21230/17:00311735 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.automatica.2016.11.021" target="_blank" >http://dx.doi.org/10.1016/j.automatica.2016.11.021</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.automatica.2016.11.021" target="_blank" >10.1016/j.automatica.2016.11.021</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Simple approximations of semialgebraic sets and their applications to control
Popis výsledku v původním jazyce
Many uncertainty sets encountered in control systems analysis and design can be expressed in terms of semialgebraic sets, that is as the intersection of sets described by means of polynomial inequalities. Important examples are for instance the Schur and Hurwitz stability domains. These sets often have very complicated shapes (nonconvex, and even non-connected), which render difficult their manipulation. It is therefore of considerable importance to find simple-enough approximations of these sets, able to capture their main characteristics while maintaining a low level of complexity. For these reasons, in the past years several convex approximations, based for instance on hyperrectangles, polytopes, or ellipsoids have been proposed. In this work, we move a step further, and propose possibly nonconvex yet still simple approximations, based on a small volume polynomial superlevel set of a single positive polynomial of given degree. We show how these sets can be easily approximated by minimizing the L1 norm of the polynomial over the semialgebraic set, subject to positivity constraints. Intuitively, this corresponds to the trace minimization heuristic commonly encountered in minimum volume ellipsoid problems. From a computational viewpoint, we design a hierarchy of convex linear matrix inequality problems to generate these approximations, and we provide theoretically rigorous convergence results, in the sense that the hierarchy of outer approximations converges in volume (or, equivalently, almost everywhere and almost uniformly) to the original set. Finally, we show how the concept of polynomial superlevel set can be used to generate samples uniformly distributed on a given semialgebraic set. The efficiency of the proposed approach is demonstrated by different numerical examples.
Název v anglickém jazyce
Simple approximations of semialgebraic sets and their applications to control
Popis výsledku anglicky
Many uncertainty sets encountered in control systems analysis and design can be expressed in terms of semialgebraic sets, that is as the intersection of sets described by means of polynomial inequalities. Important examples are for instance the Schur and Hurwitz stability domains. These sets often have very complicated shapes (nonconvex, and even non-connected), which render difficult their manipulation. It is therefore of considerable importance to find simple-enough approximations of these sets, able to capture their main characteristics while maintaining a low level of complexity. For these reasons, in the past years several convex approximations, based for instance on hyperrectangles, polytopes, or ellipsoids have been proposed. In this work, we move a step further, and propose possibly nonconvex yet still simple approximations, based on a small volume polynomial superlevel set of a single positive polynomial of given degree. We show how these sets can be easily approximated by minimizing the L1 norm of the polynomial over the semialgebraic set, subject to positivity constraints. Intuitively, this corresponds to the trace minimization heuristic commonly encountered in minimum volume ellipsoid problems. From a computational viewpoint, we design a hierarchy of convex linear matrix inequality problems to generate these approximations, and we provide theoretically rigorous convergence results, in the sense that the hierarchy of outer approximations converges in volume (or, equivalently, almost everywhere and almost uniformly) to the original set. Finally, we show how the concept of polynomial superlevel set can be used to generate samples uniformly distributed on a given semialgebraic set. The efficiency of the proposed approach is demonstrated by different numerical examples.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Automatica
ISSN
0005-1098
e-ISSN
1873-2836
Svazek periodika
78
Číslo periodika v rámci svazku
April
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
110-118
Kód UT WoS článku
000398010500013
EID výsledku v databázi Scopus
2-s2.0-85010460383