On the geometry of the countably branching diamond graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00314831" target="_blank" >RIV/68407700:21230/17:00314831 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jfa.2017.05.013" target="_blank" >http://dx.doi.org/10.1016/j.jfa.2017.05.013</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfa.2017.05.013" target="_blank" >10.1016/j.jfa.2017.05.013</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the geometry of the countably branching diamond graphs
Popis výsledku v původním jazyce
In this article, the bi-Lipschitz embeddability of the sequence of countably branching diamond graphs (D-k(omega))k is an element of N is investigated. In particular it is shown that for every epsilon > 0 and k is an element of N, D-k(omega) embeds bi-Lipschiztly with distortion at most 6(1+epsilon) into any reflexive Banach space with an unconditional asymptotic structure that does not admit an equivalent asymptotically uniformly convex norm. On the other hand it is shown that the sequence (D-k(omega))k is an element of N does not admit an equi-bi-Lipschitz embedding into any Banach space that has an equivalent asymptotically midpoint uniformly convex norm. Combining these two results one obtains a metric characterization in terms of graph preclusion of the class of asymptotically uniformly convexifiable spaces, within the class of reflexive Banach spaces with an unconditional asymptotic structure. Applications to bi-Lipschitz embeddability into L-p-spaces and to some problems in renorming theory are also discussed. (C) 2017 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
On the geometry of the countably branching diamond graphs
Popis výsledku anglicky
In this article, the bi-Lipschitz embeddability of the sequence of countably branching diamond graphs (D-k(omega))k is an element of N is investigated. In particular it is shown that for every epsilon > 0 and k is an element of N, D-k(omega) embeds bi-Lipschiztly with distortion at most 6(1+epsilon) into any reflexive Banach space with an unconditional asymptotic structure that does not admit an equivalent asymptotically uniformly convex norm. On the other hand it is shown that the sequence (D-k(omega))k is an element of N does not admit an equi-bi-Lipschitz embedding into any Banach space that has an equivalent asymptotically midpoint uniformly convex norm. Combining these two results one obtains a metric characterization in terms of graph preclusion of the class of asymptotically uniformly convexifiable spaces, within the class of reflexive Banach spaces with an unconditional asymptotic structure. Applications to bi-Lipschitz embeddability into L-p-spaces and to some problems in renorming theory are also discussed. (C) 2017 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF FUNCTIONAL ANALYSIS
ISSN
0022-1236
e-ISSN
1096-0783
Svazek periodika
273
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
50
Strana od-do
3150-3199
Kód UT WoS článku
000412150600004
EID výsledku v databázi Scopus
2-s2.0-85021173571