Density Based Clustering for Detection of Robotic Operations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315280" target="_blank" >RIV/68407700:21230/17:00315280 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Density Based Clustering for Detection of Robotic Operations
Popis výsledku v původním jazyce
This paper tackles the problem of processing measured values in time series of energy consumption data obtained in robotic production cells. The consumed energy is measured at each robot in the cell to get information about the robotic operations that are performed. Such knowledge may serve as a basis for further steps such as minimization of the energy consumption or diagnosis of the robot behavior. For the modeling of the robots, Continuous State Hidden Gaussian- Markov Models (CS-HGMM) were developed in the previous work, which rely on a set of training examples of sequences for unsupervised training. In this paper, segmentation based on signal information contents and unsupervised clustering of the acquired segments is presented. The used clustering methods have been adapted from the OPTICS algorithm, which is a generalization of the popular DBSCAN algorithm. This approach has resulted in the ability to process irregular artefacts in measured data that do not represent any particular robotic operation, and to process and cluster segment candidates that do not have the same length which happens quite often in the industrial applications.
Název v anglickém jazyce
Density Based Clustering for Detection of Robotic Operations
Popis výsledku anglicky
This paper tackles the problem of processing measured values in time series of energy consumption data obtained in robotic production cells. The consumed energy is measured at each robot in the cell to get information about the robotic operations that are performed. Such knowledge may serve as a basis for further steps such as minimization of the energy consumption or diagnosis of the robot behavior. For the modeling of the robots, Continuous State Hidden Gaussian- Markov Models (CS-HGMM) were developed in the previous work, which rely on a set of training examples of sequences for unsupervised training. In this paper, segmentation based on signal information contents and unsupervised clustering of the acquired segments is presented. The used clustering methods have been adapted from the OPTICS algorithm, which is a generalization of the popular DBSCAN algorithm. This approach has resulted in the ability to process irregular artefacts in measured data that do not represent any particular robotic operation, and to process and cluster segment candidates that do not have the same length which happens quite often in the industrial applications.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the IEEE Conference on Automation Science and Engineering
ISBN
978-1-5090-6780-0
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
IEEE
Místo vydání
Piscataway, NJ
Místo konání akce
Xi'an
Datum konání akce
20. 8. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—