Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Quantitative super-resolution single molecule microscopy dataset of YFP-tagged growth factor receptors

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00317585" target="_blank" >RIV/68407700:21230/18:00317585 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1093/gigascience/giy002" target="_blank" >https://doi.org/10.1093/gigascience/giy002</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/gigascience/giy002" target="_blank" >10.1093/gigascience/giy002</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Quantitative super-resolution single molecule microscopy dataset of YFP-tagged growth factor receptors

  • Popis výsledku v původním jazyce

    Background: Super-resolution single molecule localization microscopy (SMLM) is a method for achieving resolution beyond the classical limit in optical microscopes (approx. 200 nm laterally). Yellow fluorescent protein (YFP) has been used for super-resolution single molecule localization microscopy, but less frequently than other fluorescent probes. Working with YFP in SMLM is a challenge because a lower number of photons are emitted per molecule compared to organic dyes which are more commonly used. Publically available experimental data can facilitate development of new data analysis algorithms. Findings: Four complete, freely available single molecule super-resolution microscopy datasets on YFP-tagged growth factor receptors expressed in a human cell line are presented including both raw and analyzed data. We report methods for sample preparation, for data acquisition, and for data analysis, as well as examples of the acquired images. We also analyzed the SMLM data sets using a different method: super-resolution optical fluctuation imaging (SOFI). The two modes of analysis offer complementary information about the sample. A fifth single molecule super-resolution microscopy dataset acquired with the dye Alexa 532 is included for comparison purposes. Conclusion: This dataset has potential for extensive reuse. Complete raw data from SMLM experiments has typically not been published. The YFP data exhibits low signal to noise ratios, making data analysis a challenge. These data sets will be useful to investigators developing their own algorithms for SMLM, SOFI, and related methods. The data will also be useful for researchers investigating growth factor receptors such as ErbB3.

  • Název v anglickém jazyce

    Quantitative super-resolution single molecule microscopy dataset of YFP-tagged growth factor receptors

  • Popis výsledku anglicky

    Background: Super-resolution single molecule localization microscopy (SMLM) is a method for achieving resolution beyond the classical limit in optical microscopes (approx. 200 nm laterally). Yellow fluorescent protein (YFP) has been used for super-resolution single molecule localization microscopy, but less frequently than other fluorescent probes. Working with YFP in SMLM is a challenge because a lower number of photons are emitted per molecule compared to organic dyes which are more commonly used. Publically available experimental data can facilitate development of new data analysis algorithms. Findings: Four complete, freely available single molecule super-resolution microscopy datasets on YFP-tagged growth factor receptors expressed in a human cell line are presented including both raw and analyzed data. We report methods for sample preparation, for data acquisition, and for data analysis, as well as examples of the acquired images. We also analyzed the SMLM data sets using a different method: super-resolution optical fluctuation imaging (SOFI). The two modes of analysis offer complementary information about the sample. A fifth single molecule super-resolution microscopy dataset acquired with the dye Alexa 532 is included for comparison purposes. Conclusion: This dataset has potential for extensive reuse. Complete raw data from SMLM experiments has typically not been published. The YFP data exhibits low signal to noise ratios, making data analysis a challenge. These data sets will be useful to investigators developing their own algorithms for SMLM, SOFI, and related methods. The data will also be useful for researchers investigating growth factor receptors such as ErbB3.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-05840S" target="_blank" >GA17-05840S: Multikriteriální optimalizace modelů prostorově variantních zobrazovacích systémů</a><br>

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    GigaScience

  • ISSN

    2047-217X

  • e-ISSN

    2047-217X

  • Svazek periodika

    7

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    10

  • Strana od-do

  • Kód UT WoS článku

    000427170500001

  • EID výsledku v databázi Scopus

    2-s2.0-85048201300