Quantitative super-resolution single molecule microscopy dataset of YFP-tagged growth factor receptors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00317585" target="_blank" >RIV/68407700:21230/18:00317585 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1093/gigascience/giy002" target="_blank" >https://doi.org/10.1093/gigascience/giy002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/gigascience/giy002" target="_blank" >10.1093/gigascience/giy002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quantitative super-resolution single molecule microscopy dataset of YFP-tagged growth factor receptors
Popis výsledku v původním jazyce
Background: Super-resolution single molecule localization microscopy (SMLM) is a method for achieving resolution beyond the classical limit in optical microscopes (approx. 200 nm laterally). Yellow fluorescent protein (YFP) has been used for super-resolution single molecule localization microscopy, but less frequently than other fluorescent probes. Working with YFP in SMLM is a challenge because a lower number of photons are emitted per molecule compared to organic dyes which are more commonly used. Publically available experimental data can facilitate development of new data analysis algorithms. Findings: Four complete, freely available single molecule super-resolution microscopy datasets on YFP-tagged growth factor receptors expressed in a human cell line are presented including both raw and analyzed data. We report methods for sample preparation, for data acquisition, and for data analysis, as well as examples of the acquired images. We also analyzed the SMLM data sets using a different method: super-resolution optical fluctuation imaging (SOFI). The two modes of analysis offer complementary information about the sample. A fifth single molecule super-resolution microscopy dataset acquired with the dye Alexa 532 is included for comparison purposes. Conclusion: This dataset has potential for extensive reuse. Complete raw data from SMLM experiments has typically not been published. The YFP data exhibits low signal to noise ratios, making data analysis a challenge. These data sets will be useful to investigators developing their own algorithms for SMLM, SOFI, and related methods. The data will also be useful for researchers investigating growth factor receptors such as ErbB3.
Název v anglickém jazyce
Quantitative super-resolution single molecule microscopy dataset of YFP-tagged growth factor receptors
Popis výsledku anglicky
Background: Super-resolution single molecule localization microscopy (SMLM) is a method for achieving resolution beyond the classical limit in optical microscopes (approx. 200 nm laterally). Yellow fluorescent protein (YFP) has been used for super-resolution single molecule localization microscopy, but less frequently than other fluorescent probes. Working with YFP in SMLM is a challenge because a lower number of photons are emitted per molecule compared to organic dyes which are more commonly used. Publically available experimental data can facilitate development of new data analysis algorithms. Findings: Four complete, freely available single molecule super-resolution microscopy datasets on YFP-tagged growth factor receptors expressed in a human cell line are presented including both raw and analyzed data. We report methods for sample preparation, for data acquisition, and for data analysis, as well as examples of the acquired images. We also analyzed the SMLM data sets using a different method: super-resolution optical fluctuation imaging (SOFI). The two modes of analysis offer complementary information about the sample. A fifth single molecule super-resolution microscopy dataset acquired with the dye Alexa 532 is included for comparison purposes. Conclusion: This dataset has potential for extensive reuse. Complete raw data from SMLM experiments has typically not been published. The YFP data exhibits low signal to noise ratios, making data analysis a challenge. These data sets will be useful to investigators developing their own algorithms for SMLM, SOFI, and related methods. The data will also be useful for researchers investigating growth factor receptors such as ErbB3.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-05840S" target="_blank" >GA17-05840S: Multikriteriální optimalizace modelů prostorově variantních zobrazovacích systémů</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
GigaScience
ISSN
2047-217X
e-ISSN
2047-217X
Svazek periodika
7
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
000427170500001
EID výsledku v databázi Scopus
2-s2.0-85048201300