THE COARSE GEOMETRY OF TSIRELSON'S SPACE AND APPLICATIONS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00323439" target="_blank" >RIV/68407700:21230/18:00323439 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1090/jams/899" target="_blank" >http://dx.doi.org/10.1090/jams/899</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/jams/899" target="_blank" >10.1090/jams/899</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
THE COARSE GEOMETRY OF TSIRELSON'S SPACE AND APPLICATIONS
Popis výsledku v původním jazyce
Abstract: The main result of this article is a rigidity result pertaining to the spreading model structure for Banach spaces coarsely embeddable into Tsirelson's original space $ T^*$. Every Banach space that is coarsely embeddable into $ T^*$ must be reflexive, and all of its spreading models must be isomorphic to $ c_0$. Several important consequences follow from our rigidity result. We obtain a coarse version of an influential theorem of Tsirelson: $ T^*$ coarsely contains neither $ c_0$ nor $ ell _p$ for $ pin [1,infty )$. We show that there is no infinite-dimensional Banach space that coarsely embeds into every infinite-dimensional Banach space. In particular, we disprove the conjecture that the separable infinite-dimensional Hilbert space coarsely embeds into every infinite-dimensional Banach space. The rigidity result follows from a new concentration inequality for Lipschitz maps on the infinite Hamming graphs that take values into $ T^*$, and from the embeddability of the infinite Hamming graphs into Banach spaces that admit spreading models not isomorphic to $ c_0$. Also, a purely metric characterization of finite dimensionality is obtained.
Název v anglickém jazyce
THE COARSE GEOMETRY OF TSIRELSON'S SPACE AND APPLICATIONS
Popis výsledku anglicky
Abstract: The main result of this article is a rigidity result pertaining to the spreading model structure for Banach spaces coarsely embeddable into Tsirelson's original space $ T^*$. Every Banach space that is coarsely embeddable into $ T^*$ must be reflexive, and all of its spreading models must be isomorphic to $ c_0$. Several important consequences follow from our rigidity result. We obtain a coarse version of an influential theorem of Tsirelson: $ T^*$ coarsely contains neither $ c_0$ nor $ ell _p$ for $ pin [1,infty )$. We show that there is no infinite-dimensional Banach space that coarsely embeds into every infinite-dimensional Banach space. In particular, we disprove the conjecture that the separable infinite-dimensional Hilbert space coarsely embeds into every infinite-dimensional Banach space. The rigidity result follows from a new concentration inequality for Lipschitz maps on the infinite Hamming graphs that take values into $ T^*$, and from the embeddability of the infinite Hamming graphs into Banach spaces that admit spreading models not isomorphic to $ c_0$. Also, a purely metric characterization of finite dimensionality is obtained.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY
ISSN
0894-0347
e-ISSN
1088-6834
Svazek periodika
31
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
699-717
Kód UT WoS článku
000430377800004
EID výsledku v databázi Scopus
2-s2.0-85045897954