Visual Odometry for Vehicles’ Undercarriage 3D Modelling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00332334" target="_blank" >RIV/68407700:21230/19:00332334 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/19:00332334
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-14984-0_9" target="_blank" >https://doi.org/10.1007/978-3-030-14984-0_9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-14984-0_9" target="_blank" >10.1007/978-3-030-14984-0_9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Visual Odometry for Vehicles’ Undercarriage 3D Modelling
Popis výsledku v původním jazyce
This work describes a part of a project developing a vehicles’ undercarriage security scanner based only on cameras. The scanner is used to a security check of a vehicle’s undercarriage and is typically installed at an entrance to a strategic compund. The security scanner reconstruct a 3D model of a vehicle’s undercarriage from a sequence of a multi-camera stereo images. To get a complete model we need to stitch particular parts of the 3D model via transformations between particular vehicle positions in which images are captured. The method for getting these transformations is presented in this paper. The task of computing trajectory from a sequence of camera images is called visual odometry (VO). Usually, the camera is placed on a moving object and tracks its position. In our case, the camera is fixed and viewing a moving vehicle, but the task is the same. In the first part, there is a comparison of feature detectors and their parameters based on experimental data because the images properties of undercarriage are different from ordinary surroundings used by the most of VO methods. Undercarriages do not contain a lot of features, and there are many low-textured surfaces. In the second part, the proposed VO method is described. It is based on the best feature from the first part, which serves to search corresponding points between images. It uses 3D to 2D VO method to compute the transformation between consecutive frames. In this method, 3D points are triangulated from the previous pair of stereo camera images, and they are reprojected to one of the actual images. The method finds the transformation of 3D positions which minimizes reprojection error. The method was developed with respect to requirement of almost real-time computing time and low-texture environment. Finally, this method was evaluated on realistic data acquired with ground truth position.
Název v anglickém jazyce
Visual Odometry for Vehicles’ Undercarriage 3D Modelling
Popis výsledku anglicky
This work describes a part of a project developing a vehicles’ undercarriage security scanner based only on cameras. The scanner is used to a security check of a vehicle’s undercarriage and is typically installed at an entrance to a strategic compund. The security scanner reconstruct a 3D model of a vehicle’s undercarriage from a sequence of a multi-camera stereo images. To get a complete model we need to stitch particular parts of the 3D model via transformations between particular vehicle positions in which images are captured. The method for getting these transformations is presented in this paper. The task of computing trajectory from a sequence of camera images is called visual odometry (VO). Usually, the camera is placed on a moving object and tracks its position. In our case, the camera is fixed and viewing a moving vehicle, but the task is the same. In the first part, there is a comparison of feature detectors and their parameters based on experimental data because the images properties of undercarriage are different from ordinary surroundings used by the most of VO methods. Undercarriages do not contain a lot of features, and there are many low-textured surfaces. In the second part, the proposed VO method is described. It is based on the best feature from the first part, which serves to search corresponding points between images. It uses 3D to 2D VO method to compute the transformation between consecutive frames. In this method, 3D points are triangulated from the previous pair of stereo camera images, and they are reprojected to one of the actual images. The method finds the transformation of 3D positions which minimizes reprojection error. The method was developed with respect to requirement of almost real-time computing time and low-texture environment. Finally, this method was evaluated on realistic data acquired with ground truth position.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/VI20172020080" target="_blank" >VI20172020080: Kassandra - mnohokamerový bezpečnostní skener podvozků vozidel</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Modelling and Simulation for Autonomous Systems (MESAS 2018)
ISBN
978-3-030-14983-3
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
10
Strana od-do
111-120
Název nakladatele
Springer International Publishing AG
Místo vydání
Cham
Místo konání akce
Praha
Datum konání akce
17. 10. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000554861000009