Coverage Optimization in the Cooperative Surveillance Task using Multiple Micro Aerial Vehicles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00336539" target="_blank" >RIV/68407700:21230/19:00336539 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8914330" target="_blank" >https://ieeexplore.ieee.org/document/8914330</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SMC.2019.8914330" target="_blank" >10.1109/SMC.2019.8914330</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Coverage Optimization in the Cooperative Surveillance Task using Multiple Micro Aerial Vehicles
Popis výsledku v původním jazyce
In the task of cooperative surveillance using Micro Aerial Vehicles (MAVs), MAVs cooperatively observe a given set of Areas of Interest (AoI). The missions are usually prepared in a decoupled manner: first, the sensing locations are found, followed by computations of the trajectories assuming GPS-based localization. The precision of GPS may, however, be insufficient to keep the MAVs in compact groups, which may lead to mutual collisions. To avoid the collisions between MAVs, a camera-based on-board localization has to be used. This however requires to maintain positions of the team members in the given range to enable reliable on-board localization (each MAV has to be visible from other ones). The task of the mission planning is to find an appropriate distribution of MAVs above AoIs together with feasible trajectories from a depot to reach these locations. The on-board localization constraints and MAV motion constraints have to be satisfied during the entire mission. We propose a modification of RRT (Rapidly Exploring Random Tree) for this mission planning. The algorithm first explores the state space to find suitable sensing locations together with feasible trajectories towards them. Then, the sensing locations are optimized using Particle Swarm optimization (PSO). The proposed method has been verified in numerous simulations and outdoor experiments. The achieved results exhibit significantly better performance in terms of lower computational power and complexity of solved scenarios than the state-of-the-art solutions.
Název v anglickém jazyce
Coverage Optimization in the Cooperative Surveillance Task using Multiple Micro Aerial Vehicles
Popis výsledku anglicky
In the task of cooperative surveillance using Micro Aerial Vehicles (MAVs), MAVs cooperatively observe a given set of Areas of Interest (AoI). The missions are usually prepared in a decoupled manner: first, the sensing locations are found, followed by computations of the trajectories assuming GPS-based localization. The precision of GPS may, however, be insufficient to keep the MAVs in compact groups, which may lead to mutual collisions. To avoid the collisions between MAVs, a camera-based on-board localization has to be used. This however requires to maintain positions of the team members in the given range to enable reliable on-board localization (each MAV has to be visible from other ones). The task of the mission planning is to find an appropriate distribution of MAVs above AoIs together with feasible trajectories from a depot to reach these locations. The on-board localization constraints and MAV motion constraints have to be satisfied during the entire mission. We propose a modification of RRT (Rapidly Exploring Random Tree) for this mission planning. The algorithm first explores the state space to find suitable sensing locations together with feasible trajectories towards them. Then, the sensing locations are optimized using Particle Swarm optimization (PSO). The proposed method has been verified in numerous simulations and outdoor experiments. The achieved results exhibit significantly better performance in terms of lower computational power and complexity of solved scenarios than the state-of-the-art solutions.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2019 IEEE International Conference on Systems, Man and Cybernetics (SMC)
ISBN
978-1-7281-4569-3
ISSN
2577-1655
e-ISSN
—
Počet stran výsledku
8
Strana od-do
4373-4380
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Bari
Datum konání akce
6. 10. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—