Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Coverage Optimization in the Cooperative Surveillance Task using Multiple Micro Aerial Vehicles

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00336539" target="_blank" >RIV/68407700:21230/19:00336539 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/8914330" target="_blank" >https://ieeexplore.ieee.org/document/8914330</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/SMC.2019.8914330" target="_blank" >10.1109/SMC.2019.8914330</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Coverage Optimization in the Cooperative Surveillance Task using Multiple Micro Aerial Vehicles

  • Popis výsledku v původním jazyce

    In the task of cooperative surveillance using Micro Aerial Vehicles (MAVs), MAVs cooperatively observe a given set of Areas of Interest (AoI). The missions are usually prepared in a decoupled manner: first, the sensing locations are found, followed by computations of the trajectories assuming GPS-based localization. The precision of GPS may, however, be insufficient to keep the MAVs in compact groups, which may lead to mutual collisions. To avoid the collisions between MAVs, a camera-based on-board localization has to be used. This however requires to maintain positions of the team members in the given range to enable reliable on-board localization (each MAV has to be visible from other ones). The task of the mission planning is to find an appropriate distribution of MAVs above AoIs together with feasible trajectories from a depot to reach these locations. The on-board localization constraints and MAV motion constraints have to be satisfied during the entire mission. We propose a modification of RRT (Rapidly Exploring Random Tree) for this mission planning. The algorithm first explores the state space to find suitable sensing locations together with feasible trajectories towards them. Then, the sensing locations are optimized using Particle Swarm optimization (PSO). The proposed method has been verified in numerous simulations and outdoor experiments. The achieved results exhibit significantly better performance in terms of lower computational power and complexity of solved scenarios than the state-of-the-art solutions.

  • Název v anglickém jazyce

    Coverage Optimization in the Cooperative Surveillance Task using Multiple Micro Aerial Vehicles

  • Popis výsledku anglicky

    In the task of cooperative surveillance using Micro Aerial Vehicles (MAVs), MAVs cooperatively observe a given set of Areas of Interest (AoI). The missions are usually prepared in a decoupled manner: first, the sensing locations are found, followed by computations of the trajectories assuming GPS-based localization. The precision of GPS may, however, be insufficient to keep the MAVs in compact groups, which may lead to mutual collisions. To avoid the collisions between MAVs, a camera-based on-board localization has to be used. This however requires to maintain positions of the team members in the given range to enable reliable on-board localization (each MAV has to be visible from other ones). The task of the mission planning is to find an appropriate distribution of MAVs above AoIs together with feasible trajectories from a depot to reach these locations. The on-board localization constraints and MAV motion constraints have to be satisfied during the entire mission. We propose a modification of RRT (Rapidly Exploring Random Tree) for this mission planning. The algorithm first explores the state space to find suitable sensing locations together with feasible trajectories towards them. Then, the sensing locations are optimized using Particle Swarm optimization (PSO). The proposed method has been verified in numerous simulations and outdoor experiments. The achieved results exhibit significantly better performance in terms of lower computational power and complexity of solved scenarios than the state-of-the-art solutions.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20204 - Robotics and automatic control

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2019 IEEE International Conference on Systems, Man and Cybernetics (SMC)

  • ISBN

    978-1-7281-4569-3

  • ISSN

    2577-1655

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    4373-4380

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway

  • Místo konání akce

    Bari

  • Datum konání akce

    6. 10. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku