Swarm Distribution and Deployment for Cooperative Surveillance by Micro-Aerial Vehicles
Popis výsledku
Identifikátory výsledku
Kód výsledku v IS VaVaI
Nalezeny alternativní kódy
RIV/68407700:21230/16:00300958
Výsledek na webu
DOI - Digital Object Identifier
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Swarm Distribution and Deployment for Cooperative Surveillance by Micro-Aerial Vehicles
Popis výsledku v původním jazyce
The task of cooperative surveillance of pre- selected Areas of Interest (AoI) in outdoor environ- ments by groups of closely cooperating Micro Aerial Vehicles (MAVs) is tackled in this paper. In the coop- erative surveillance mission, finding distributions of the MAVs in the environment to properly cover the AoIs and finding feasible trajectories to reach the obtained surveillance locations from the initial depot are crucial tasks that have to be fulfilled. In addition, motion constraints of the employed MAVs, environ- ment constraints (e.g. non-fly zones), and constraints imposed by localization of members of the groups need to be satisfied in the planning process. We for- mulate the task of cooperative surveillance as a single high-dimensional optimization problem to be able to integrate all these requirements. Due to numerous con- straints that have to be satisfied, we propose to solve the problem using an evolutionary-based optimiza- tion technique. An important aspect of the proposed method is that the cooperating MAVs are localized relatively to each other, rather than using a global localization system. This increases robustness of the system and its deploy-ability in scenarios, in which compact shapes of the MAV group with short relative distances are required.
Název v anglickém jazyce
Swarm Distribution and Deployment for Cooperative Surveillance by Micro-Aerial Vehicles
Popis výsledku anglicky
The task of cooperative surveillance of pre- selected Areas of Interest (AoI) in outdoor environ- ments by groups of closely cooperating Micro Aerial Vehicles (MAVs) is tackled in this paper. In the coop- erative surveillance mission, finding distributions of the MAVs in the environment to properly cover the AoIs and finding feasible trajectories to reach the obtained surveillance locations from the initial depot are crucial tasks that have to be fulfilled. In addition, motion constraints of the employed MAVs, environ- ment constraints (e.g. non-fly zones), and constraints imposed by localization of members of the groups need to be satisfied in the planning process. We for- mulate the task of cooperative surveillance as a single high-dimensional optimization problem to be able to integrate all these requirements. Due to numerous con- straints that have to be satisfied, we propose to solve the problem using an evolutionary-based optimiza- tion technique. An important aspect of the proposed method is that the cooperating MAVs are localized relatively to each other, rather than using a global localization system. This increases robustness of the system and its deploy-ability in scenarios, in which compact shapes of the MAV group with short relative distances are required.
Klasifikace
Druh
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Intelligent and Robotic Systems
ISSN
0921-0296
e-ISSN
—
Svazek periodika
84
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
24
Strana od-do
469-492
Kód UT WoS článku
000390027900029
EID výsledku v databázi Scopus
2-s2.0-84957687172
Základní informace
Druh výsledku
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP
JD - Využití počítačů, robotika a její aplikace
Rok uplatnění
2016