COMPUTING CONTROLLED INVARIANT SETS FROM DATA USING CONVEX OPTIMIZATION
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00344661" target="_blank" >RIV/68407700:21230/20:00344661 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1137/19M1305835" target="_blank" >https://doi.org/10.1137/19M1305835</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/19M1305835" target="_blank" >10.1137/19M1305835</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
COMPUTING CONTROLLED INVARIANT SETS FROM DATA USING CONVEX OPTIMIZATION
Popis výsledku v původním jazyce
This work presents a data-driven method for approximation of the maximum positively invariant (MPI) set and the maximum controlled invariant (MCI) set for nonlinear dynamical systems. The method only requires knowledge of a finite collection of one-step transitions of the discrete-time dynamics, without the requirement of segments of trajectories or the control inputs that effected the transitions to be available. The approach uses a novel characterization of the MPI and MCI sets as the solution to an infinite-dimensional linear programming (LP) problem in the space of continuous functions, with the optimum being attained by a (Lipschitz) continuous function under mild assumptions. The infinite-dimensional LP is then approximated by restricting the decision variable to a finite-dimensional subspace and by imposing the nonnegativity constraint of this LP only on the available data samples. This leads to a single finite-dimensional LP that can be easily solved using off-the-shelf solvers. We analyze the convergence rate and sample complexity, proving probabilistic as well as hard guarantees on the volume error of the approximations. The approach is very general, requiring minimal underlying assumptions. In particular, the dynamics is not required to be polynomial or even continuous (forgoing some of the theoretical results). Detailed numerical examples up to state-space dimension 10 with code available online demonstrate the method.
Název v anglickém jazyce
COMPUTING CONTROLLED INVARIANT SETS FROM DATA USING CONVEX OPTIMIZATION
Popis výsledku anglicky
This work presents a data-driven method for approximation of the maximum positively invariant (MPI) set and the maximum controlled invariant (MCI) set for nonlinear dynamical systems. The method only requires knowledge of a finite collection of one-step transitions of the discrete-time dynamics, without the requirement of segments of trajectories or the control inputs that effected the transitions to be available. The approach uses a novel characterization of the MPI and MCI sets as the solution to an infinite-dimensional linear programming (LP) problem in the space of continuous functions, with the optimum being attained by a (Lipschitz) continuous function under mild assumptions. The infinite-dimensional LP is then approximated by restricting the decision variable to a finite-dimensional subspace and by imposing the nonnegativity constraint of this LP only on the available data samples. This leads to a single finite-dimensional LP that can be easily solved using off-the-shelf solvers. We analyze the convergence rate and sample complexity, proving probabilistic as well as hard guarantees on the volume error of the approximations. The approach is very general, requiring minimal underlying assumptions. In particular, the dynamics is not required to be polynomial or even continuous (forgoing some of the theoretical results). Detailed numerical examples up to state-space dimension 10 with code available online demonstrate the method.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ20-11626Y" target="_blank" >GJ20-11626Y: Koncept Koopmanova operátoru pro řízení komplexních nelineárních dynamických systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Control and Optimization
ISSN
0363-0129
e-ISSN
1095-7138
Svazek periodika
58
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
29
Strana od-do
2871-2899
Kód UT WoS článku
000584700500007
EID výsledku v databázi Scopus
2-s2.0-85095684696