Hornet 40: Network Dataset of Geographically Placed Honeypots
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00354948" target="_blank" >RIV/68407700:21230/22:00354948 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.dib.2022.107795" target="_blank" >https://doi.org/10.1016/j.dib.2022.107795</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dib.2022.107795" target="_blank" >10.1016/j.dib.2022.107795</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hornet 40: Network Dataset of Geographically Placed Honeypots
Popis výsledku v původním jazyce
Deception technologies, and honeypots in particular, have been used for decades to understand how cyber attacks and attackers work. A myriad of factors impact the effectiveness of a honeypot. However, very few is known about the impact of the geographical location of honeypots on the amount and type of attacks. Hornet 40 is the first dataset designed to help understand how the geolocation of honeypots may impact the inflow of network attacks. The data consists of network flows in binary and text format, with up to 118 features, including 480 bytes of the content of each flow. They were created using the Argus flow collector. The passive honeypots are IP addresses connected to the Internet and do not have any honeypot software running, so attacks are not interactive. The data was collected from identically configured honeypot servers in eight locations: Amsterdam, Bangalore, Frankfurt, London, New York, San Francisco, Singapore, and Toronto. The dataset contains over 4.7 million network flows collected during forty days throughout April, May, and June 2021.
Název v anglickém jazyce
Hornet 40: Network Dataset of Geographically Placed Honeypots
Popis výsledku anglicky
Deception technologies, and honeypots in particular, have been used for decades to understand how cyber attacks and attackers work. A myriad of factors impact the effectiveness of a honeypot. However, very few is known about the impact of the geographical location of honeypots on the amount and type of attacks. Hornet 40 is the first dataset designed to help understand how the geolocation of honeypots may impact the inflow of network attacks. The data consists of network flows in binary and text format, with up to 118 features, including 480 bytes of the content of each flow. They were created using the Argus flow collector. The passive honeypots are IP addresses connected to the Internet and do not have any honeypot software running, so attacks are not interactive. The data was collected from identically configured honeypot servers in eight locations: Amsterdam, Bangalore, Frankfurt, London, New York, San Francisco, Singapore, and Toronto. The dataset contains over 4.7 million network flows collected during forty days throughout April, May, and June 2021.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Data in Brief
ISSN
2352-3409
e-ISSN
—
Svazek periodika
40
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
10
Strana od-do
1-10
Kód UT WoS článku
000787646200036
EID výsledku v databázi Scopus
2-s2.0-85123934105