Effect of non-standard SnAg surface finishes on properties of solder joints
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00370276" target="_blank" >RIV/68407700:21230/23:00370276 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.apsadv.2023.100483" target="_blank" >https://doi.org/10.1016/j.apsadv.2023.100483</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apsadv.2023.100483" target="_blank" >10.1016/j.apsadv.2023.100483</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effect of non-standard SnAg surface finishes on properties of solder joints
Popis výsledku v původním jazyce
In this study, the effects of nonstandard near-eutectic SnAg surfaces on the wettability, intermetallic compound growth and mechanical properties of solder joints were investigated. Four types of surface finishes based on near eutectic SnAg alloys with different compositions and numbers of layers were analyzed. Design/methodology/approach: The effect of surface-finishes SnAg5NiP and SnAg7NiP, which were prepared with and without a Ni-P diffusion barrier, was tested. The Ni-P layer was produced either chemically or electrochemically. The effect of the SnAg surface finish on wettability, formation, and growth of intermetallic compound in the solder joint was analyzed. We further explored the impact of different PCB finishes on the quality of soldered joints. This investigation involved a comparative analysis of the behavior of SnAg finishes in comparison to pure copper, as well as the commonly employed HASL, ENIG, and ImSn finishes.Findings: It was found that SnAg surface finishes with a Ni-P diffusion barrier are wetted by molten solder faster than surface finishes without a diffusion barrier. The mechanical properties of the joints on both surfaces are comparable to those on ENIG. SnAg that include a chemically created Ni-P diffusion layer is characterized by the formation of more thermally stable ternary intermetallic compounds based on (Cu,Ni)6Sn5 and (Ni,Cu)3Sn4. On the contrary, the electrochemically formed Ni layer supports the increase in the rate of intermetallic compound formation, which affects the properties of the soldered joints.Originality: Nonstandard near-eutectic SnAg finishes, which contains a Ni-P diffusion layer can be used as promising replacement of ENIG or other standard finishes.
Název v anglickém jazyce
Effect of non-standard SnAg surface finishes on properties of solder joints
Popis výsledku anglicky
In this study, the effects of nonstandard near-eutectic SnAg surfaces on the wettability, intermetallic compound growth and mechanical properties of solder joints were investigated. Four types of surface finishes based on near eutectic SnAg alloys with different compositions and numbers of layers were analyzed. Design/methodology/approach: The effect of surface-finishes SnAg5NiP and SnAg7NiP, which were prepared with and without a Ni-P diffusion barrier, was tested. The Ni-P layer was produced either chemically or electrochemically. The effect of the SnAg surface finish on wettability, formation, and growth of intermetallic compound in the solder joint was analyzed. We further explored the impact of different PCB finishes on the quality of soldered joints. This investigation involved a comparative analysis of the behavior of SnAg finishes in comparison to pure copper, as well as the commonly employed HASL, ENIG, and ImSn finishes.Findings: It was found that SnAg surface finishes with a Ni-P diffusion barrier are wetted by molten solder faster than surface finishes without a diffusion barrier. The mechanical properties of the joints on both surfaces are comparable to those on ENIG. SnAg that include a chemically created Ni-P diffusion layer is characterized by the formation of more thermally stable ternary intermetallic compounds based on (Cu,Ni)6Sn5 and (Ni,Cu)3Sn4. On the contrary, the electrochemically formed Ni layer supports the increase in the rate of intermetallic compound formation, which affects the properties of the soldered joints.Originality: Nonstandard near-eutectic SnAg finishes, which contains a Ni-P diffusion layer can be used as promising replacement of ENIG or other standard finishes.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Surface Science Advances
ISSN
2666-5239
e-ISSN
2666-5239
Svazek periodika
18
Číslo periodika v rámci svazku
100483
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
001113572400001
EID výsledku v databázi Scopus
2-s2.0-85178932393