Complexity of Weighted First-Order Model Counting in the Two-Variable Fragment with Counting Quantifiers: A Bound to Beat
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00378130" target="_blank" >RIV/68407700:21230/24:00378130 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.24963/kr.2024/64" target="_blank" >https://doi.org/10.24963/kr.2024/64</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24963/kr.2024/64" target="_blank" >10.24963/kr.2024/64</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Complexity of Weighted First-Order Model Counting in the Two-Variable Fragment with Counting Quantifiers: A Bound to Beat
Popis výsledku v původním jazyce
We study the time complexity of weighted first-order model counting (WFOMC) over the logical language with two variables and counting quantifiers. The problem is known to be solvable in time polynomial in the domain size. However, the degree of the polynomial, which turns out to be relatively high for most practical applications, has never been properly addressed. First, we formulate a time complexity bound for the existing techniques for solving WFOMC with counting quantifiers. The bound is already known to be a polynomial with its degree depending on the number of cells of the input formula. We observe that the number of cells depends, in turn, exponentially on the parameters of the counting quantifiers appearing in the formula. Second, we propose a new approach to dealing with counting quantifiers, reducing the exponential dependency to a quadratic one, therefore obtaining a tighter upper bound. It remains an open question whether the dependency of the polynomial degree on the counting quantifiers can be reduced further, thus making our new bound a bound to beat.
Název v anglickém jazyce
Complexity of Weighted First-Order Model Counting in the Two-Variable Fragment with Counting Quantifiers: A Bound to Beat
Popis výsledku anglicky
We study the time complexity of weighted first-order model counting (WFOMC) over the logical language with two variables and counting quantifiers. The problem is known to be solvable in time polynomial in the domain size. However, the degree of the polynomial, which turns out to be relatively high for most practical applications, has never been properly addressed. First, we formulate a time complexity bound for the existing techniques for solving WFOMC with counting quantifiers. The bound is already known to be a polynomial with its degree depending on the number of cells of the input formula. We observe that the number of cells depends, in turn, exponentially on the parameters of the counting quantifiers appearing in the formula. Second, we propose a new approach to dealing with counting quantifiers, reducing the exponential dependency to a quadratic one, therefore obtaining a tighter upper bound. It remains an open question whether the dependency of the polynomial degree on the counting quantifiers can be reduced further, thus making our new bound a bound to beat.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
ISBN
978-1-956792-05-8
ISSN
2334-1033
e-ISSN
2334-1033
Počet stran výsledku
11
Strana od-do
676-686
Název nakladatele
International Joint Conferences on Artificial Intelligence Organization
Místo vydání
—
Místo konání akce
Hanoi
Datum konání akce
2. 11. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—