Bolzano’s Infinite Quantities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F18%3A00328600" target="_blank" >RIV/68407700:21240/18:00328600 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10699-018-9549-z#citeas" target="_blank" >https://link.springer.com/article/10.1007/s10699-018-9549-z#citeas</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10699-018-9549-z" target="_blank" >10.1007/s10699-018-9549-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bolzano’s Infinite Quantities
Popis výsledku v původním jazyce
In his Foundations of a General Theory of Manifolds, Georg Cantor praised Bernard Bolzano as a clear defender of actual infinity who had the courage to work with infinite numbers. At the same time, he sharply criticized the way Bolzano dealt with them. Cantor’s concept was based on the existence of a one-to-one correspondence, while Bolzano insisted on Euclid’s Axiom of the whole being greater than a part. Cantor’s set theory has eventually prevailed, and became a formal basis of contemporary mathematics, while Bolzano’s approach is generally considered a step in the wrong direction. In the present paper, we demonstrate that a fragment of Bolzano’s theory of infinite quantities retaining the part-whole principle can be extended to a consistent mathematical structure. It can be interpreted in several possible ways. We obtain either a linearly ordered ring of finite and infinitely great quantities or a partially ordered ring containing infinitely small, finite and infinitely great quantities. These structures can be used as a basis of the infinitesimal calculus similarly as in non-standard analysis, whether in its full version employing ultrafilters due to Abraham Robinson or in the recent “cheap version” avoiding ultrafilters due to Terence Tao.
Název v anglickém jazyce
Bolzano’s Infinite Quantities
Popis výsledku anglicky
In his Foundations of a General Theory of Manifolds, Georg Cantor praised Bernard Bolzano as a clear defender of actual infinity who had the courage to work with infinite numbers. At the same time, he sharply criticized the way Bolzano dealt with them. Cantor’s concept was based on the existence of a one-to-one correspondence, while Bolzano insisted on Euclid’s Axiom of the whole being greater than a part. Cantor’s set theory has eventually prevailed, and became a formal basis of contemporary mathematics, while Bolzano’s approach is generally considered a step in the wrong direction. In the present paper, we demonstrate that a fragment of Bolzano’s theory of infinite quantities retaining the part-whole principle can be extended to a consistent mathematical structure. It can be interpreted in several possible ways. We obtain either a linearly ordered ring of finite and infinitely great quantities or a partially ordered ring containing infinitely small, finite and infinitely great quantities. These structures can be used as a basis of the infinitesimal calculus similarly as in non-standard analysis, whether in its full version employing ultrafilters due to Abraham Robinson or in the recent “cheap version” avoiding ultrafilters due to Terence Tao.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Foundations of Science
ISSN
1233-1821
e-ISSN
1572-8471
Svazek periodika
23
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
24
Strana od-do
681-704
Kód UT WoS článku
000449939200005
EID výsledku v databázi Scopus
2-s2.0-85042546502