Infinity and continuum in the alternative set theory.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00360959" target="_blank" >RIV/68407700:21240/22:00360959 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s13194-021-00429-7" target="_blank" >https://doi.org/10.1007/s13194-021-00429-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13194-021-00429-7" target="_blank" >10.1007/s13194-021-00429-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Infinity and continuum in the alternative set theory.
Popis výsledku v původním jazyce
Alternative set theory was created by the Czech mathematician Petr Vopěnka in 1979 as an alternative to Cantor’s set theory. Vopěnka criticised Cantor’s approach for its loss of correspondence with the real world. Alternative set theory can be partially axiomatised and regarded as a nonstandard theory of natural numbers. However, its intention is much wider. It attempts to retain a correspondence between mathematical notions and phenomena of the natural world. Through infinity, Vopˇenka grasps the phenomena of vagueness. Infinite sets are defined as sets containing proper semisets, i.e. vague parts of sets limited by the horizon. The new interpretation extends the field of applicability of mathematics and simultaneously indicates its limits. Compared to strict finitism and other attempts at a reduction of the infinite to the finite Vopˇenka’s theory reverses the process: he models the finite in the infinite.
Název v anglickém jazyce
Infinity and continuum in the alternative set theory.
Popis výsledku anglicky
Alternative set theory was created by the Czech mathematician Petr Vopěnka in 1979 as an alternative to Cantor’s set theory. Vopěnka criticised Cantor’s approach for its loss of correspondence with the real world. Alternative set theory can be partially axiomatised and regarded as a nonstandard theory of natural numbers. However, its intention is much wider. It attempts to retain a correspondence between mathematical notions and phenomena of the natural world. Through infinity, Vopˇenka grasps the phenomena of vagueness. Infinite sets are defined as sets containing proper semisets, i.e. vague parts of sets limited by the horizon. The new interpretation extends the field of applicability of mathematics and simultaneously indicates its limits. Compared to strict finitism and other attempts at a reduction of the infinite to the finite Vopˇenka’s theory reverses the process: he models the finite in the infinite.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal for Philosophy of Scinece
ISSN
1879-4912
e-ISSN
1879-4920
Svazek periodika
12
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
23
Strana od-do
—
Kód UT WoS článku
000733737100002
EID výsledku v databázi Scopus
2-s2.0-85121731608