Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Phenomenological Approach to Infinity and Continuum

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F18%3A00328906" target="_blank" >RIV/68407700:21240/18:00328906 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.alws.at/abstract_2018.pdf" target="_blank" >https://www.alws.at/abstract_2018.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Phenomenological Approach to Infinity and Continuum

  • Popis výsledku v původním jazyce

    Since the 1960s, when Robinson non-standard analysis was established, several other non-standard models of natural and real numbers have been created. The not widely known theory of the Czech mathematician Petr Vopěnka, Alternative Set Theory, AST, was also developed. It is an alternative to Cantor Set Theory, which Vopěnka criticized for numerous reasons. Cantor’s justification for accepting the actual infinity was theological; in modern axiomatic systems it is expressed by the axiom of infinity. Infinite hierarchy of infinite cardinal and ordinal numbers finds minimal interpretation in the real world. The existence of independent theorems leads to dividing set theory into several branches, from which none can be considered the sole truth. Vopěnka’s AST relies on phenomenology and endeavours to interpret basic terms of infinite mathematics in the real world. It uses the infinite for the mathematization of indistinctness. Apart from classic sets and classes, here so-called semisets are introduced. AST can be partially formalized as the non-standard model. Similarly, as with other non-standard theories, it does not bring breakthrough mathematical results that have been impossible to describe in a standard manner. What is substantial is its philosophical interpretation, which attempts to retain correspondence with the real world. It offers the solution of certain old philosophical problems: Zeno's paradoxes, sorites, Leibniz’s conception of continuum, Pascal’s double infinity.

  • Název v anglickém jazyce

    Phenomenological Approach to Infinity and Continuum

  • Popis výsledku anglicky

    Since the 1960s, when Robinson non-standard analysis was established, several other non-standard models of natural and real numbers have been created. The not widely known theory of the Czech mathematician Petr Vopěnka, Alternative Set Theory, AST, was also developed. It is an alternative to Cantor Set Theory, which Vopěnka criticized for numerous reasons. Cantor’s justification for accepting the actual infinity was theological; in modern axiomatic systems it is expressed by the axiom of infinity. Infinite hierarchy of infinite cardinal and ordinal numbers finds minimal interpretation in the real world. The existence of independent theorems leads to dividing set theory into several branches, from which none can be considered the sole truth. Vopěnka’s AST relies on phenomenology and endeavours to interpret basic terms of infinite mathematics in the real world. It uses the infinite for the mathematization of indistinctness. Apart from classic sets and classes, here so-called semisets are introduced. AST can be partially formalized as the non-standard model. Similarly, as with other non-standard theories, it does not bring breakthrough mathematical results that have been impossible to describe in a standard manner. What is substantial is its philosophical interpretation, which attempts to retain correspondence with the real world. It offers the solution of certain old philosophical problems: Zeno's paradoxes, sorites, Leibniz’s conception of continuum, Pascal’s double infinity.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Philosophy of Logic and Mathematics

  • ISBN

  • ISSN

    1022-3398

  • e-ISSN

  • Počet stran výsledku

    3

  • Strana od-do

    248-250

  • Název nakladatele

    Austrian Ludwig Wittgenstein Society

  • Místo vydání

    Kirchberg am Wechsel

  • Místo konání akce

    Kirchberg am Wechsel

  • Datum konání akce

    5. 8. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku