Migrating Techniques from Search-based Multi-Agent Path Finding Solvers to SAT-based Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00357052" target="_blank" >RIV/68407700:21240/22:00357052 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1613/jair.1.13318" target="_blank" >https://doi.org/10.1613/jair.1.13318</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1613/jair.1.13318" target="_blank" >10.1613/jair.1.13318</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Migrating Techniques from Search-based Multi-Agent Path Finding Solvers to SAT-based Approach
Popis výsledku v původním jazyce
In the multi-agent path finding problem (MAPF) we are given a set of agents each with re- spective start and goal positions. The task is to find paths for all agents while avoiding collisions, aiming to minimize a given objective function. Many MAPF solvers were introduced in the past decade for optimizing two specific objective functions: sum-of-costs and makespan. Two prominent categories of solvers can be distinguished: search-based solvers and compilation-based solvers. Search-based solvers were developed and tested for the sum-of-costs objective, while the most prominent compilation-based solvers that are built around Boolean satisfiability (SAT) were designed for the makespan objective. Very little is known on the performance and relevance of solvers from the compilation-based approach on the sum-of-costs objective. In this paper, we start to close the gap between these cost functions in the compilation-based approach.
Název v anglickém jazyce
Migrating Techniques from Search-based Multi-Agent Path Finding Solvers to SAT-based Approach
Popis výsledku anglicky
In the multi-agent path finding problem (MAPF) we are given a set of agents each with re- spective start and goal positions. The task is to find paths for all agents while avoiding collisions, aiming to minimize a given objective function. Many MAPF solvers were introduced in the past decade for optimizing two specific objective functions: sum-of-costs and makespan. Two prominent categories of solvers can be distinguished: search-based solvers and compilation-based solvers. Search-based solvers were developed and tested for the sum-of-costs objective, while the most prominent compilation-based solvers that are built around Boolean satisfiability (SAT) were designed for the makespan objective. Very little is known on the performance and relevance of solvers from the compilation-based approach on the sum-of-costs objective. In this paper, we start to close the gap between these cost functions in the compilation-based approach.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-17966S" target="_blank" >GA19-17966S: intALG-MAPFg: Inteligentní algoritmy pro zobecněné varianty multi-agetního hledání cest</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Artificial Intelligence Research
ISSN
1076-9757
e-ISSN
1943-5037
Svazek periodika
2022
Číslo periodika v rámci svazku
73
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
66
Strana od-do
553-618
Kód UT WoS článku
000755563700002
EID výsledku v databázi Scopus
2-s2.0-85125937283