Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Atoms confined by very thin layers

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F14%3A00222327" target="_blank" >RIV/68407700:21340/14:00222327 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://scitation.aip.org/content/aip/journal/jmp/55/11/10.1063/1.4901560" target="_blank" >http://scitation.aip.org/content/aip/journal/jmp/55/11/10.1063/1.4901560</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.4901560" target="_blank" >10.1063/1.4901560</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Atoms confined by very thin layers

  • Popis výsledku v původním jazyce

    The Hamiltonian of an atom with N electrons and a fixed nucleus of infinite mass between two parallel planes is considered in the limit when the distance a between the planes tends to zero. We show that this Hamiltonian converges in the norm resolvent sense to a Schrödinger operator acting effectively in L^2(R^2N) whose potential part depends on a. Moreover, we prove that after an appropriate regularization this Schrödinger operator tends, again in the norm resolvent sense, to the Hamiltonian of a two-dimensional atom (with the three-dimensional Coulomb potential-one over distance) as a->0. This makes possible to locate the discrete spectrum of the full Hamiltonian once we know the spectrum of the latter one. Our results also provide a mathematical justification for the interest in the two-dimensional atoms with the three-dimensional Coulomb potential.

  • Název v anglickém jazyce

    Atoms confined by very thin layers

  • Popis výsledku anglicky

    The Hamiltonian of an atom with N electrons and a fixed nucleus of infinite mass between two parallel planes is considered in the limit when the distance a between the planes tends to zero. We show that this Hamiltonian converges in the norm resolvent sense to a Schrödinger operator acting effectively in L^2(R^2N) whose potential part depends on a. Moreover, we prove that after an appropriate regularization this Schrödinger operator tends, again in the norm resolvent sense, to the Hamiltonian of a two-dimensional atom (with the three-dimensional Coulomb potential-one over distance) as a->0. This makes possible to locate the discrete spectrum of the full Hamiltonian once we know the spectrum of the latter one. Our results also provide a mathematical justification for the interest in the two-dimensional atoms with the three-dimensional Coulomb potential.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA13-11058S" target="_blank" >GA13-11058S: Spektrální analýza operátorů a její aplikace v kvantové mechanice</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Mathematical Physics

  • ISSN

    0022-2488

  • e-ISSN

  • Svazek periodika

    55

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

    "112105-1"-"112105-17"

  • Kód UT WoS článku

    000345643100012

  • EID výsledku v databázi Scopus