A family of explicitly diagonalizable weighted Hankel matrices generalizing the Hilbert matrix
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F16%3A00234545" target="_blank" >RIV/68407700:21340/16:00234545 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/16:00234545
Výsledek na webu
<a href="http://dx.doi.org/10.1080/03081087.2015.1064348" target="_blank" >http://dx.doi.org/10.1080/03081087.2015.1064348</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/03081087.2015.1064348" target="_blank" >10.1080/03081087.2015.1064348</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A family of explicitly diagonalizable weighted Hankel matrices generalizing the Hilbert matrix
Popis výsledku v původním jazyce
A three-parameter family B = B(a, b, c) of weighted Hankel matrices is introduced where a, b, c are positive parameters fulfilling a < b + c, b < a + c, c <= a + b. The famous Hilbert matrix is included as a particular case. The direct sum B(a, b, c) + B(a + 1, b + 1, c) is shown to commute with a discrete analogue of the dilatation operator. It follows that there exists a three-parameter family of real symmetric Jacobi matrices, T (a, b, c), commuting with B(a, b, c). The orthogonal polynomials associated with T (a, b, c) turn out to be the continuous dual Hahn polynomials. Consequently, a unitary mapping U diagonalizing T (a, b, c) can be constructed explicitly. At the same time, U diagonalizes B(a, b, c) and the spectrum of this matrix operator is shown to be purely absolutely continuous and filling the interval [0, M(a, b, c)] where M(a, b, c) is known explicitly. If the assumption c <= a + b is relaxed while the remaining inequalities on a, b, c are all supposed to be valid, the spectrum contains also a finite discrete part lying above the threshold M(a, b, c). Again, all eigenvalues and eigenvectors are described explicitly.
Název v anglickém jazyce
A family of explicitly diagonalizable weighted Hankel matrices generalizing the Hilbert matrix
Popis výsledku anglicky
A three-parameter family B = B(a, b, c) of weighted Hankel matrices is introduced where a, b, c are positive parameters fulfilling a < b + c, b < a + c, c <= a + b. The famous Hilbert matrix is included as a particular case. The direct sum B(a, b, c) + B(a + 1, b + 1, c) is shown to commute with a discrete analogue of the dilatation operator. It follows that there exists a three-parameter family of real symmetric Jacobi matrices, T (a, b, c), commuting with B(a, b, c). The orthogonal polynomials associated with T (a, b, c) turn out to be the continuous dual Hahn polynomials. Consequently, a unitary mapping U diagonalizing T (a, b, c) can be constructed explicitly. At the same time, U diagonalizes B(a, b, c) and the spectrum of this matrix operator is shown to be purely absolutely continuous and filling the interval [0, M(a, b, c)] where M(a, b, c) is known explicitly. If the assumption c <= a + b is relaxed while the remaining inequalities on a, b, c are all supposed to be valid, the spectrum contains also a finite discrete part lying above the threshold M(a, b, c). Again, all eigenvalues and eigenvectors are described explicitly.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-11058S" target="_blank" >GA13-11058S: Spektrální analýza operátorů a její aplikace v kvantové mechanice</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Linear and Multilinear Algebra
ISSN
0308-1087
e-ISSN
—
Svazek periodika
64
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
870-884
Kód UT WoS článku
000373740700008
EID výsledku v databázi Scopus
2-s2.0-84957927039