Soliton solutions and traveling wave solutions of the two-dimensional generalized nonlinear Schrodinger equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00382606" target="_blank" >RIV/68407700:21340/21:00382606 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1140/epjp/s13360-021-02092-6" target="_blank" >https://doi.org/10.1140/epjp/s13360-021-02092-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1140/epjp/s13360-021-02092-6" target="_blank" >10.1140/epjp/s13360-021-02092-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Soliton solutions and traveling wave solutions of the two-dimensional generalized nonlinear Schrodinger equations
Popis výsledku v původním jazyce
In this paper, the two-dimensional generalized nonlinear Schrodinger equations are introduced with the Lax pair. The existence of the Lax pair defines integrability for the partial differential equation, so the two-dimensional generalized nonlinear Schrodinger equations are integrable. Related to this development was the understanding that certain coherent structures called solitons play a basic role in nonlinear phenomena as fluid mechanics, nonlinear optics relativity, and lattice dynamics. Via the Hirota bilinear method, bilinear forms of the two-dimensional generalized nonlinear Schrodinger equations are obtained. Based on which one- and two-soliton solutions are derived. Furthermore, to find traveling wave solutions the extended tanh method is applied. Through 2D and 3D plots, the dynamical behavior of the obtained solutions is studied. The generalized form of the nonlinear Schrodinger equations has a mathematical and physical interest because a fundamental model in the field of nonlinear science. The used methods are quite useful in the solution of nonlinear partial differential equations.
Název v anglickém jazyce
Soliton solutions and traveling wave solutions of the two-dimensional generalized nonlinear Schrodinger equations
Popis výsledku anglicky
In this paper, the two-dimensional generalized nonlinear Schrodinger equations are introduced with the Lax pair. The existence of the Lax pair defines integrability for the partial differential equation, so the two-dimensional generalized nonlinear Schrodinger equations are integrable. Related to this development was the understanding that certain coherent structures called solitons play a basic role in nonlinear phenomena as fluid mechanics, nonlinear optics relativity, and lattice dynamics. Via the Hirota bilinear method, bilinear forms of the two-dimensional generalized nonlinear Schrodinger equations are obtained. Based on which one- and two-soliton solutions are derived. Furthermore, to find traveling wave solutions the extended tanh method is applied. Through 2D and 3D plots, the dynamical behavior of the obtained solutions is studied. The generalized form of the nonlinear Schrodinger equations has a mathematical and physical interest because a fundamental model in the field of nonlinear science. The used methods are quite useful in the solution of nonlinear partial differential equations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
EUROPEAN PHYSICAL JOURNAL PLUS
ISSN
2190-5444
e-ISSN
—
Svazek periodika
136
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
000712974000004
EID výsledku v databázi Scopus
2-s2.0-85118320392