Degree Conditions Forcing Directed Cycles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00365664" target="_blank" >RIV/68407700:21340/23:00365664 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/10467/108535" target="_blank" >http://hdl.handle.net/10467/108535</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/imrn/rnac114" target="_blank" >10.1093/imrn/rnac114</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Degree Conditions Forcing Directed Cycles
Popis výsledku v původním jazyce
Caccetta-Haggkvist conjecture is a longstanding open problem on degree conditions that force an oriented graph to contain a directed cycle of a bounded length. Motivated by this conjecture, Kelly, Kuhn, and Osthus initiated a study of degree conditions forcing the containment of a directed cycle of a given length. In particular, they found the optimal minimum semidegree, that is, the smaller of the minimum indegree and the minimum outdegree, which forces a large oriented graph to contain a directed cycle of a given length not divisible by 3, and conjectured the optimal minimum semidegree for all the other cycles except the directed triangle. In this paper, we establish the best possible minimum semidegree that forces a large oriented graph to contain a directed cycle of a given length divisible by 3 yet not equal to 3, hence fully resolve the conjecture by Kelly, Kuhn, and Osthus. We also find an asymptotically optimal semidegree threshold of any cycle with a given orientation of its edges with the sole exception of a directed triangle.
Název v anglickém jazyce
Degree Conditions Forcing Directed Cycles
Popis výsledku anglicky
Caccetta-Haggkvist conjecture is a longstanding open problem on degree conditions that force an oriented graph to contain a directed cycle of a bounded length. Motivated by this conjecture, Kelly, Kuhn, and Osthus initiated a study of degree conditions forcing the containment of a directed cycle of a given length. In particular, they found the optimal minimum semidegree, that is, the smaller of the minimum indegree and the minimum outdegree, which forces a large oriented graph to contain a directed cycle of a given length not divisible by 3, and conjectured the optimal minimum semidegree for all the other cycles except the directed triangle. In this paper, we establish the best possible minimum semidegree that forces a large oriented graph to contain a directed cycle of a given length divisible by 3 yet not equal to 3, hence fully resolve the conjecture by Kelly, Kuhn, and Osthus. We also find an asymptotically optimal semidegree threshold of any cycle with a given orientation of its edges with the sole exception of a directed triangle.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Mathematics Research Notices
ISSN
1073-7928
e-ISSN
1687-0247
Svazek periodika
2023
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
43
Strana od-do
9711-9753
Kód UT WoS článku
000797059000001
EID výsledku v databázi Scopus
2-s2.0-85163052902