Robust network formation with biological applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F24%3A00376622" target="_blank" >RIV/68407700:21340/24:00376622 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3934/nhm.2024035" target="_blank" >https://doi.org/10.3934/nhm.2024035</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/nhm.2024035" target="_blank" >10.3934/nhm.2024035</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust network formation with biological applications
Popis výsledku v původním jazyce
We have provided new results on the structure of optimal transportation networks obtained as minimizers of an energy cost functional posed on a discrete graph. The energy consists of a kinetic (pumping) and a material (metabolic) cost term, constrained by a local mass conservation law. In particular, we have proved that every tree (i.e., graph without loops) represents a local minimizer of the energy with concave metabolic cost. For the linear metabolic cost, we have proved that the set of minimizers contains a loop-free structure. Moreover, we enriched the energy functional such that it accounts also for robustness of the network, measured in terms of the Fiedler number of the graph with edge weights given by their conductivities. We examined fundamental properties of the modified functional, in particular, its convexity and differentiability. We provided analytical insights into the new model by considering two simple examples. Subsequently, we employed the projected subgradient method to find global minimizers of the modified functional numerically. We then presented two numerical examples, illustrating how the optimal graph's structure and energy expenditure depend on the required robustness of the network.
Název v anglickém jazyce
Robust network formation with biological applications
Popis výsledku anglicky
We have provided new results on the structure of optimal transportation networks obtained as minimizers of an energy cost functional posed on a discrete graph. The energy consists of a kinetic (pumping) and a material (metabolic) cost term, constrained by a local mass conservation law. In particular, we have proved that every tree (i.e., graph without loops) represents a local minimizer of the energy with concave metabolic cost. For the linear metabolic cost, we have proved that the set of minimizers contains a loop-free structure. Moreover, we enriched the energy functional such that it accounts also for robustness of the network, measured in terms of the Fiedler number of the graph with edge weights given by their conductivities. We examined fundamental properties of the modified functional, in particular, its convexity and differentiability. We provided analytical insights into the new model by considering two simple examples. Subsequently, we employed the projected subgradient method to find global minimizers of the modified functional numerically. We then presented two numerical examples, illustrating how the optimal graph's structure and energy expenditure depend on the required robustness of the network.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-04720S" target="_blank" >GA23-04720S: Jemné vlastnosti funkcí, operátorů a prostorů funkcí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Networks and Heterogeneous Media
ISSN
1556-1801
e-ISSN
1556-181X
Svazek periodika
19
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
29
Strana od-do
771-799
Kód UT WoS článku
001292088200001
EID výsledku v databázi Scopus
2-s2.0-85202175173