TacticToe: Learning to Reason with HOL4 Tactics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F17%3A00319002" target="_blank" >RIV/68407700:21730/17:00319002 - isvavai.cz</a>
Výsledek na webu
<a href="https://easychair.org/publications/paper/WsM" target="_blank" >https://easychair.org/publications/paper/WsM</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
TacticToe: Learning to Reason with HOL4 Tactics
Popis výsledku v původním jazyce
Techniques combining machine learning with translation to automated reasoning have recently become an important component of formal proof assistants. Such “hammer” techniques complement traditional proof assistant automation as implemented by tactics and decision procedures. In this paper we present a unified proof assistant automation approach which attempts to automate the selection of appropriate tactics and tactic-sequences combined with an optimized small-scale hammering approach. We implement the technique as a tactic-level automation for HOL4: TacticToe. It implements a modified A*-algorithm directly in HOL4 that explores different tactic-level proof paths, guiding their selection by learning from a large number of previous tactic-level proofs. Unlike the existing hammer methods, TacticToe avoids translation to FOL, working directly on the HOL level. By combining tactic prediction and premise selection, TacticToe is able to re-prove 39% of 7902 HOL4 theorems in 5 seconds whereas the best single HOL(y)Hammer strategy solves 32% in the same amount of time.
Název v anglickém jazyce
TacticToe: Learning to Reason with HOL4 Tactics
Popis výsledku anglicky
Techniques combining machine learning with translation to automated reasoning have recently become an important component of formal proof assistants. Such “hammer” techniques complement traditional proof assistant automation as implemented by tactics and decision procedures. In this paper we present a unified proof assistant automation approach which attempts to automate the selection of appropriate tactics and tactic-sequences combined with an optimized small-scale hammering approach. We implement the technique as a tactic-level automation for HOL4: TacticToe. It implements a modified A*-algorithm directly in HOL4 that explores different tactic-level proof paths, guiding their selection by learning from a large number of previous tactic-level proofs. Unlike the existing hammer methods, TacticToe avoids translation to FOL, working directly on the HOL level. By combining tactic prediction and premise selection, TacticToe is able to re-prove 39% of 7902 HOL4 theorems in 5 seconds whereas the best single HOL(y)Hammer strategy solves 32% in the same amount of time.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning
ISBN
—
ISSN
2398-7340
e-ISSN
—
Počet stran výsledku
19
Strana od-do
125-143
Název nakladatele
EasyChair Publications
Místo vydání
Manchester
Místo konání akce
Maun
Datum konání akce
7. 5. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—