Decentralized Reinforcement Learning of Robot Behaviors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F18%3A00316453" target="_blank" >RIV/68407700:21730/18:00316453 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.artint.2017.12.001" target="_blank" >https://doi.org/10.1016/j.artint.2017.12.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.artint.2017.12.001" target="_blank" >10.1016/j.artint.2017.12.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Decentralized Reinforcement Learning of Robot Behaviors
Popis výsledku v původním jazyce
A multi-agent methodology is proposed for Decentralized Reinforcement Learning (DRL) of individual behaviors in problems where multi-dimensional action spaces are involved. When using this methodology, sub-tasks are learned in parallel by individual agents working toward a common goal. In addition to proposing this methodology, three specific multi agent DRL approaches are considered: DRL-Independent, DRL Cooperative-Adaptive (CA), and DRL-Lenient. These approaches are validated and analyzed with an extensive empirical study using four different problems: 3D Mountain Car, SCARA Real-Time Trajectory Generation, Ball-Dribbling in humanoid soccer robotics, and Ball-Pushing using differential drive robots. The experimental validation provides evidence that DRL implementations show better performances and faster learning times than their centralized counterparts, while using less computational resources. DRL-Lenient and DRL-CA algorithms achieve the best final performances for the four tested problems, outperforming their DRL-Independent counterparts. Furthermore, the benefits of the DRL-Lenient and DRL-CA are more noticeable when the problem complexity increases and the centralized scheme becomes intractable given the available computational resources and training time.
Název v anglickém jazyce
Decentralized Reinforcement Learning of Robot Behaviors
Popis výsledku anglicky
A multi-agent methodology is proposed for Decentralized Reinforcement Learning (DRL) of individual behaviors in problems where multi-dimensional action spaces are involved. When using this methodology, sub-tasks are learned in parallel by individual agents working toward a common goal. In addition to proposing this methodology, three specific multi agent DRL approaches are considered: DRL-Independent, DRL Cooperative-Adaptive (CA), and DRL-Lenient. These approaches are validated and analyzed with an extensive empirical study using four different problems: 3D Mountain Car, SCARA Real-Time Trajectory Generation, Ball-Dribbling in humanoid soccer robotics, and Ball-Pushing using differential drive robots. The experimental validation provides evidence that DRL implementations show better performances and faster learning times than their centralized counterparts, while using less computational resources. DRL-Lenient and DRL-CA algorithms achieve the best final performances for the four tested problems, outperforming their DRL-Independent counterparts. Furthermore, the benefits of the DRL-Lenient and DRL-CA are more noticeable when the problem complexity increases and the centralized scheme becomes intractable given the available computational resources and training time.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000470" target="_blank" >EF15_003/0000470: Robotika pro Průmysl 4.0</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Artificial Intelligence
ISSN
0004-3702
e-ISSN
1872-7921
Svazek periodika
256
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
30
Strana od-do
130-159
Kód UT WoS článku
000424958700005
EID výsledku v databázi Scopus
2-s2.0-85038868982