Human Intention Recognition for Human Aware Planning in Integrated Warehouse Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F20%3A00346441" target="_blank" >RIV/68407700:21730/20:00346441 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/MED48518.2020.9183266" target="_blank" >https://doi.org/10.1109/MED48518.2020.9183266</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/MED48518.2020.9183266" target="_blank" >10.1109/MED48518.2020.9183266</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Human Intention Recognition for Human Aware Planning in Integrated Warehouse Systems
Popis výsledku v původním jazyce
With the substantial growth of logistics businesses the need for larger and more automated warehouses increases, thus giving rise to fully robotized shop-floors with mobile robots in charge of transporting and distributing goods. However, even in fully automatized warehouse systems the need for human intervention frequently arises, whether because of maintenance or because of fulfilling specific orders, thus bringing mobile robots and humans ever closer in an integrated warehouse environment. In order to ensure smooth and efficient operation of such a warehouse, paths of both robots and humans need to be carefully planned; however, due to the possibility of humans deviating from the assigned path, this becomes an even more challenging task. Given that, the supervising system should be able to recognize human intentions and its alternative paths in real-time. In this paper, we propose a framework for human deviation detection and intention recognition which outputs the most probable paths of the humans workers and the planner that acts accordingly by replanning for robots to move out of the human's path. Experimental results demonstrate that the proposed framework increases total number of deliveries, especially human deliveries, and reduces human-robot encounters.
Název v anglickém jazyce
Human Intention Recognition for Human Aware Planning in Integrated Warehouse Systems
Popis výsledku anglicky
With the substantial growth of logistics businesses the need for larger and more automated warehouses increases, thus giving rise to fully robotized shop-floors with mobile robots in charge of transporting and distributing goods. However, even in fully automatized warehouse systems the need for human intervention frequently arises, whether because of maintenance or because of fulfilling specific orders, thus bringing mobile robots and humans ever closer in an integrated warehouse environment. In order to ensure smooth and efficient operation of such a warehouse, paths of both robots and humans need to be carefully planned; however, due to the possibility of humans deviating from the assigned path, this becomes an even more challenging task. Given that, the supervising system should be able to recognize human intentions and its alternative paths in real-time. In this paper, we propose a framework for human deviation detection and intention recognition which outputs the most probable paths of the humans workers and the planner that acts accordingly by replanning for robots to move out of the human's path. Experimental results demonstrate that the proposed framework increases total number of deliveries, especially human deliveries, and reduces human-robot encounters.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 2020 28th Mediterranean Conference on Control and Automation
ISBN
978-1-7281-5742-9
ISSN
2325-369X
e-ISSN
2473-3504
Počet stran výsledku
6
Strana od-do
586-591
Název nakladatele
IEEE Xplore
Místo vydání
—
Místo konání akce
Saint-Raphael, France
Datum konání akce
16. 9. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000612207700096