Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Human Localization in Robotized Warehouses based on Stereo Odometry and Ground-Marker Fusion

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F22%3A00351935" target="_blank" >RIV/68407700:21730/22:00351935 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.rcim.2021.102241" target="_blank" >https://doi.org/10.1016/j.rcim.2021.102241</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rcim.2021.102241" target="_blank" >10.1016/j.rcim.2021.102241</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Human Localization in Robotized Warehouses based on Stereo Odometry and Ground-Marker Fusion

  • Popis výsledku v původním jazyce

    Modern logistic solutions for large warehouses consist of a fleet of robots that transfer goods, move racks, and perform other physically difficult and repetitive tasks. The shopfloor is usually enclosed with a safety fence and if a human needs to enter the warehouse all the robots are stopped, as opposed to only the ones in the most immediate vicinity of the human, thus significantly limiting the warehouse efficiency. To tackle this challenge, an integrated safety system is needed with human localization as one of its essential components. In this paper, we propose a novel human localization method for robotized warehouses that is based on a suite of wearable visual sensors installed on a vest worn by humans. The proposed method does not require any modifications of the warehouse environment and relies on the already existing infrastructure. Specifically, we estimate the human location by fusing stereo visual-inertial odometry data and distances to the known absolute poses of the detected ground-markers which robots use for their localization. Fusion is performed by building a pose graph, where we treat estimated human poses relative to markers as graph nodes and odometry estimates as graph edges. We conducted extensive laboratory and warehouse facility experiments, where we tested the reliability and accuracy of the proposed method and compared its performance to a state-of-the-art visual SLAM solution, namely ORB-SLAM2. The results indicate that our method can track absolute position in real-time and has competitive accuracy with respect to ORB-SLAM2, while ensuring higher localization reliability when faced with structural changes in the environment. Furthermore, we provide publicly the experimental datasets to the research community.

  • Název v anglickém jazyce

    Human Localization in Robotized Warehouses based on Stereo Odometry and Ground-Marker Fusion

  • Popis výsledku anglicky

    Modern logistic solutions for large warehouses consist of a fleet of robots that transfer goods, move racks, and perform other physically difficult and repetitive tasks. The shopfloor is usually enclosed with a safety fence and if a human needs to enter the warehouse all the robots are stopped, as opposed to only the ones in the most immediate vicinity of the human, thus significantly limiting the warehouse efficiency. To tackle this challenge, an integrated safety system is needed with human localization as one of its essential components. In this paper, we propose a novel human localization method for robotized warehouses that is based on a suite of wearable visual sensors installed on a vest worn by humans. The proposed method does not require any modifications of the warehouse environment and relies on the already existing infrastructure. Specifically, we estimate the human location by fusing stereo visual-inertial odometry data and distances to the known absolute poses of the detected ground-markers which robots use for their localization. Fusion is performed by building a pose graph, where we treat estimated human poses relative to markers as graph nodes and odometry estimates as graph edges. We conducted extensive laboratory and warehouse facility experiments, where we tested the reliability and accuracy of the proposed method and compared its performance to a state-of-the-art visual SLAM solution, namely ORB-SLAM2. The results indicate that our method can track absolute position in real-time and has competitive accuracy with respect to ORB-SLAM2, while ensuring higher localization reliability when faced with structural changes in the environment. Furthermore, we provide publicly the experimental datasets to the research community.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    R - Projekt Ramcoveho programu EK

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Robotics and Computer-Integrated Manufacturing

  • ISSN

    0736-5845

  • e-ISSN

    1879-2537

  • Svazek periodika

    73

  • Číslo periodika v rámci svazku

    February

  • Stát vydavatele periodika

    IE - Irsko

  • Počet stran výsledku

    14

  • Strana od-do

  • Kód UT WoS článku

    000704359300005

  • EID výsledku v databázi Scopus

    2-s2.0-85114131314