Student success prediction using student exam behaviour
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F21%3A00350678" target="_blank" >RIV/68407700:21730/21:00350678 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.future.2021.07.009" target="_blank" >https://doi.org/10.1016/j.future.2021.07.009</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.future.2021.07.009" target="_blank" >10.1016/j.future.2021.07.009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Student success prediction using student exam behaviour
Popis výsledku v původním jazyce
The Faculty of Mechanical Engineering, Czech Technical University in Prague (FME) faces a significant student drop-out in the first-year bachelor programme, which is an actual problem for many higher education institutions. Metacognitive processes play a vital role in self-regulated learning. Students become active participants in their learning, and one critical aspect of higher education studies is planning and time management. The exam taking behaviour is in the context of the FME manifestation of the time management skills of each student; thus, the exam-taking patterns may help identify at-risk students. To evaluate the importance of exam behaviour patterns, we conducted three experiments. Identification of students passing or failing the first study year has been conducted using four different machine learning models. The exam taking behaviour patterns increase the prediction F-measure significantly for the class of failing students (approximately 0.3 increase). Moreover, the approach based on student behaviour enabled us to identify the critical exam-taking patterns, which further helps the lecturers identify at-risk students and improve their time management skills and chances to pass the first academic year.
Název v anglickém jazyce
Student success prediction using student exam behaviour
Popis výsledku anglicky
The Faculty of Mechanical Engineering, Czech Technical University in Prague (FME) faces a significant student drop-out in the first-year bachelor programme, which is an actual problem for many higher education institutions. Metacognitive processes play a vital role in self-regulated learning. Students become active participants in their learning, and one critical aspect of higher education studies is planning and time management. The exam taking behaviour is in the context of the FME manifestation of the time management skills of each student; thus, the exam-taking patterns may help identify at-risk students. To evaluate the importance of exam behaviour patterns, we conducted three experiments. Identification of students passing or failing the first study year has been conducted using four different machine learning models. The exam taking behaviour patterns increase the prediction F-measure significantly for the class of failing students (approximately 0.3 increase). Moreover, the approach based on student behaviour enabled us to identify the critical exam-taking patterns, which further helps the lecturers identify at-risk students and improve their time management skills and chances to pass the first academic year.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ18-04150Y" target="_blank" >GJ18-04150Y: Prediktivní modelování studentova výkonu s využitím výukových zdrojů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Future Generation Computer Systems
ISSN
0167-739X
e-ISSN
1872-7115
Svazek periodika
125
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
11
Strana od-do
661-671
Kód UT WoS článku
000687964600015
EID výsledku v databázi Scopus
2-s2.0-85111000952